AWS Deep Learning Containers发布PyTorch Graviton EC2推理镜像v1.10
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组预构建的Docker镜像,旨在简化深度学习工作负载的部署。这些容器镜像预先配置了流行的深度学习框架、依赖项和优化工具,使数据科学家和开发人员能够快速启动和运行深度学习应用程序,而无需花费时间手动设置环境。
近日,AWS发布了针对Graviton处理器优化的PyTorch推理容器镜像新版本v1.10,该版本基于PyTorch 2.4.0框架,专为在EC2实例上运行推理工作负载而设计。这个版本特别值得关注的是它针对ARM架构的Graviton处理器进行了优化,能够充分发挥Graviton处理器的性能优势。
镜像技术细节
该容器镜像基于Ubuntu 22.04操作系统构建,预装了Python 3.11环境。核心组件包括:
- PyTorch 2.4.0 + CPU版本
- TorchVision 0.19.0
- TorchAudio 2.4.0
- TorchServe 0.12.0模型服务框架
- Torch Model Archiver 0.12.0模型打包工具
镜像中还包含了常用的数据处理和科学计算库:
- NumPy 1.26.4
- SciPy 1.14.1
- OpenCV 4.10.0
- Pillow 11.0.0图像处理库
关键特性与优势
-
Graviton处理器优化:该镜像专门针对AWS Graviton处理器进行了优化,能够在基于ARM架构的EC2实例上提供更好的性价比。
-
完整的推理工具链:包含了从模型服务(TorchServe)到模型打包(Torch Model Archiver)的全套工具,支持生产环境部署。
-
轻量级设计:作为CPU专用版本,去除了GPU相关依赖,使得镜像更加轻量,适合不需要GPU加速的推理场景。
-
稳定可靠的依赖关系:所有预装软件包都经过严格测试,确保版本兼容性和稳定性。
-
开发友好环境:虽然主要面向推理场景,但仍包含了Emacs等开发工具,方便用户进行调试和开发。
适用场景
这个PyTorch推理容器镜像特别适合以下应用场景:
- 在Graviton处理器上部署PyTorch模型推理服务
- 构建轻量级的机器学习API服务
- 开发测试环境中的模型验证
- 需要高性价比CPU推理解决方案的业务场景
总结
AWS Deep Learning Containers通过提供这种预构建、优化过的容器镜像,大大降低了用户在AWS云上部署深度学习工作负载的复杂度。这个针对Graviton处理器优化的PyTorch推理镜像版本,不仅继承了DLC产品线的一贯优势,还特别针对ARM架构进行了性能优化,为用户提供了更具成本效益的推理解决方案。对于已经在使用或计划使用AWS Graviton实例的用户来说,这个镜像版本无疑是一个值得考虑的选择。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00