深入分析Recipe-Scrapers项目中的Kitchenstories网站爬取异常问题
2025-07-07 22:21:26作者:邵娇湘
问题背景
在Python生态中,recipe-scrapers是一个专门用于从各类食谱网站提取结构化数据的开源库。近期有用户反馈在使用该库爬取Kitchenstories网站时遇到了异常情况,表现为无法正确提取食谱信息。本文将从技术角度深入分析该问题。
问题现象
当用户尝试使用recipe-scrapers爬取Kitchenstories网站特定食谱页面时,系统抛出了NotImplementedError异常。具体表现为:
- 调用title()方法时失败
- 错误提示"NotImplementedError: This should be implemented."
- 其他相关方法同样无法正常工作
技术分析
1. 基础爬取流程分析
recipe-scrapers的标准工作流程包含以下关键步骤:
- 通过requests获取目标页面HTML内容
- 将HTML内容传递给scrape_html函数
- 使用返回的scraper对象提取各类信息
2. 异常原因推测
从错误信息来看,系统未能正确识别和解析目标页面的数据结构。可能原因包括:
- 反爬机制触发:网站可能检测到爬虫行为并返回了不同的内容
- 页面结构变更:目标网站的HTML结构可能已更新,与解析器不兼容
- 地域限制:某些内容可能基于用户地理位置返回不同结果
- 请求头问题:User-Agent等HTTP头信息可能影响服务器响应
3. 验证测试
通过对比测试发现:
- 部分用户能够正常爬取
- 部分用户遭遇失败
- 不同食谱网站表现不一致
这表明问题可能与网络环境或请求特征相关,而非纯粹的代码缺陷。
解决方案建议
1. 基础排查步骤
- 浏览器验证:首先确认目标页面在常规浏览器中能否正常访问
- HTML保存分析:将浏览器获取的页面保存为HTML文件,尝试本地解析
- 请求头调整:尝试修改User-Agent等HTTP头信息
2. 高级解决方案
对于持续出现的问题,可考虑:
- 使用Selenium:通过浏览器自动化工具获取页面内容
- 网络服务:尝试不同地理位置的IP地址
- 请求频率控制:降低爬取频率避免触发反爬机制
- 异常处理增强:在代码中添加更完善的错误处理和重试机制
技术启示
这个案例展示了现代网络爬虫开发中的常见挑战:
- 动态内容处理:现代网站越来越多地使用动态加载和反爬技术
- 环境依赖性:爬虫行为可能因网络环境不同而产生差异
- 健壮性设计:需要为爬虫设计完善的错误处理和恢复机制
总结
recipe-scrapers项目遇到的这个特定问题反映了网络数据采集中的典型挑战。开发者需要理解,稳定的爬虫实现不仅依赖于解析逻辑,还需要考虑网络环境、反爬策略等多方面因素。通过系统化的排查和适当的技术调整,大多数类似问题都能得到有效解决。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
189
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92