TensorFlow 转 ONNX 项目教程
项目介绍
TensorFlow 转 ONNX 项目(tensorflow-onnx)是一个开源工具,旨在将 TensorFlow 模型转换为 ONNX(Open Neural Network Exchange)格式。ONNX 是一种开放的格式,用于表示深度学习模型,使得模型可以在不同的框架和工具之间进行互操作。该项目支持 TensorFlow 1.x 和 2.x 版本,并且可以通过简单的命令行工具或 Python API 进行模型转换。
项目快速启动
安装
首先,确保你已经安装了 TensorFlow。如果尚未安装,可以使用以下命令进行安装:
pip install tensorflow
接下来,安装 tensorflow-onnx:
pip install tf2onnx
转换模型
假设你有一个冻结的 TensorFlow 模型文件 frozen_model.pb,可以使用以下命令将其转换为 ONNX 格式:
python -m tf2onnx.convert --graphdef frozen_model.pb --output model.onnx --inputs input_tensor:0 --outputs output_tensor:0
其中,--graphdef 指定输入的 TensorFlow 模型文件,--output 指定输出的 ONNX 模型文件,--inputs 和 --outputs 分别指定模型的输入和输出节点。
应用案例和最佳实践
案例一:图像分类模型转换
假设你有一个使用 TensorFlow 训练的图像分类模型,你可以按照以下步骤将其转换为 ONNX 格式:
- 冻结 TensorFlow 模型。
- 使用上述命令将冻结的模型转换为 ONNX 格式。
- 使用 ONNX Runtime 进行推理。
最佳实践
- 确保模型冻结:在转换之前,确保 TensorFlow 模型已经冻结,即不再包含训练相关的节点。
- 指定正确的输入输出节点:在转换命令中,确保正确指定了模型的输入和输出节点。
- 使用特定版本的 ONNX opset:如果需要特定版本的 ONNX opset,可以在转换命令中使用
--opset参数。
典型生态项目
ONNX Runtime
ONNX Runtime 是一个高性能的推理引擎,支持 ONNX 格式的模型。通过将 TensorFlow 模型转换为 ONNX 格式,可以利用 ONNX Runtime 进行加速推理。
TensorFlow.js
TensorFlow.js 是一个用于在浏览器和 Node.js 中运行机器学习模型的库。通过将 TensorFlow 模型转换为 ONNX 格式,然后使用 ONNX.js 进行转换,可以在前端环境中部署模型。
PyTorch
PyTorch 是一个流行的深度学习框架,支持 ONNX 格式的模型。通过将 TensorFlow 模型转换为 ONNX 格式,可以在 PyTorch 中进行进一步的模型优化和部署。
通过这些生态项目,可以实现 TensorFlow 模型在不同平台和框架之间的无缝迁移和部署。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00