首页
/ GLM-4模型加载中的浮点精度问题解析与解决方案

GLM-4模型加载中的浮点精度问题解析与解决方案

2025-06-03 03:53:37作者:裴麒琰

在深度学习模型的实际应用中,浮点精度的选择对模型性能和硬件资源消耗有着重要影响。本文将以THUDM/GLM-4项目中的模型加载过程为例,深入分析浮点精度设置的关键问题。

问题现象

当开发者尝试使用transformers库加载GLM-4-9B模型时,发现即使显式指定了torch.float16精度,模型最终仍会以bfloat16精度加载。这与同期的Llama-3模型表现不同,后者能正确保持float16精度。

技术背景

现代深度学习框架通常支持多种浮点精度:

  • float16 (FP16):16位浮点数,节省显存但数值范围较小
  • bfloat16 (BF16):16位浮点数,保留与float32相同的指数位,训练稳定性更好
  • float32 (FP32):32位标准浮点数

GLM-4系列模型在config.json中默认指定了bfloat16精度,这是出于模型稳定性的考虑。

问题根源

通过分析transformers库的模型加载机制,我们发现:

  1. 模型配置(config)中的torch_dtype参数具有最高优先级
  2. AutoModelForCausalLM.from_pretrained()方法的config参数会覆盖直接传入的torch_dtype参数
  3. GLM-4的config.json中明确设置了"torch_dtype": "bfloat16"

解决方案

开发者可以通过以下方式确保模型以指定精度加载:

  1. 修改配置法(推荐):
config = AutoConfig.from_pretrained(path, torch_dtype=torch.float16, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(path, config=config, trust_remote_code=True)
  1. 强制转换法
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.float16, trust_remote_code=True)
model = model.to(torch.float16)

技术建议

  1. 对于GLM-4系列模型,建议保持使用bfloat16精度,这是经过验证的最佳实践
  2. 精度转换可能影响模型输出质量,转换后应进行充分测试
  3. 不同硬件对浮点精度的支持程度不同,需结合具体硬件选择

总结

模型精度选择需要平衡计算效率、内存占用和数值稳定性。GLM-4默认使用bfloat16是经过充分验证的配置,开发者如需修改应了解潜在影响。通过合理配置transformers加载参数,可以灵活控制模型精度以满足不同场景需求。

登录后查看全文
热门项目推荐

热门内容推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
47
253
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
347
381
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
516
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
179
263
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K
harmony-utilsharmony-utils
harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0