GLM-4模型微调中Loss为0.0的问题分析与解决方案
2025-06-03 00:29:55作者:房伟宁
问题背景
在使用GLM-4大语言模型进行LoRA微调时,开发者可能会遇到一个特殊现象:训练过程中Loss值始终显示为0.0,同时梯度范数(grad_norm)也为0.0。这种情况通常表明模型没有进行有效的学习,需要仔细排查原因。
常见原因分析
1. 输入长度设置不当
GLM-4作为大语言模型,其输入输出长度设置对训练效果至关重要。如果max_input_length或max_output_length设置过小,可能导致输入数据被过度截断,模型无法获取足够信息进行有效学习。
2. 浮点精度问题
现代大模型训练通常使用混合精度训练,特别是bf16(脑浮点16位)格式。如果硬件不支持bf16或配置不当,可能导致数值计算异常,表现为Loss为0。
3. 数据预处理问题
数据集中可能存在格式问题,如标签(label)数据不正确或被错误处理,导致模型无法计算有效的损失值。
解决方案
1. 调整输入输出长度
建议检查并适当增大配置文件中的max_input_length和max_output_length参数。对于GLM-4这类大模型,通常需要设置较大的值(如8192)以适应长文本输入。
2. 确认浮点精度支持
检查训练日志中模型加载时的提示信息,确认是否成功启用了bf16。如果硬件不支持bf16,可考虑使用fp16(但效果可能略差)。
3. 验证数据质量
建议:
- 检查数据集样本是否包含有效的内容和标签
- 确认数据预处理流程是否正确
- 可以先用少量数据测试,观察是否能产生非零Loss
4. 更新模型文件
确保使用的是最新版本的模型文件和训练脚本,旧版本可能存在已知问题。
实践建议
-
从小规模实验开始:先用少量数据和较短的序列长度进行测试,确认基本流程正常后再扩展。
-
监控训练过程:除了Loss值,还应关注其他指标如梯度变化、内存使用情况等。
-
系统环境检查:特别是在Windows子系统环境下,确保文件路径、权限等设置正确。
通过以上方法系统排查,通常可以解决GLM-4微调中Loss为0的问题,使模型能够正常学习并提升性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
263
295
暂无简介
Dart
708
168
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
176
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
836
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
686
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
411
130