GLM-4模型微调中Loss为0.0的问题分析与解决方案
2025-06-03 18:26:50作者:房伟宁
问题背景
在使用GLM-4大语言模型进行LoRA微调时,开发者可能会遇到一个特殊现象:训练过程中Loss值始终显示为0.0,同时梯度范数(grad_norm)也为0.0。这种情况通常表明模型没有进行有效的学习,需要仔细排查原因。
常见原因分析
1. 输入长度设置不当
GLM-4作为大语言模型,其输入输出长度设置对训练效果至关重要。如果max_input_length或max_output_length设置过小,可能导致输入数据被过度截断,模型无法获取足够信息进行有效学习。
2. 浮点精度问题
现代大模型训练通常使用混合精度训练,特别是bf16(脑浮点16位)格式。如果硬件不支持bf16或配置不当,可能导致数值计算异常,表现为Loss为0。
3. 数据预处理问题
数据集中可能存在格式问题,如标签(label)数据不正确或被错误处理,导致模型无法计算有效的损失值。
解决方案
1. 调整输入输出长度
建议检查并适当增大配置文件中的max_input_length和max_output_length参数。对于GLM-4这类大模型,通常需要设置较大的值(如8192)以适应长文本输入。
2. 确认浮点精度支持
检查训练日志中模型加载时的提示信息,确认是否成功启用了bf16。如果硬件不支持bf16,可考虑使用fp16(但效果可能略差)。
3. 验证数据质量
建议:
- 检查数据集样本是否包含有效的内容和标签
- 确认数据预处理流程是否正确
- 可以先用少量数据测试,观察是否能产生非零Loss
4. 更新模型文件
确保使用的是最新版本的模型文件和训练脚本,旧版本可能存在已知问题。
实践建议
-
从小规模实验开始:先用少量数据和较短的序列长度进行测试,确认基本流程正常后再扩展。
-
监控训练过程:除了Loss值,还应关注其他指标如梯度变化、内存使用情况等。
-
系统环境检查:特别是在Windows子系统环境下,确保文件路径、权限等设置正确。
通过以上方法系统排查,通常可以解决GLM-4微调中Loss为0的问题,使模型能够正常学习并提升性能。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
93
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.33 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1