Label Studio 关键点标注数据转 YOLO 格式的完整指南
2025-05-10 15:53:35作者:晏闻田Solitary
前言
在计算机视觉领域,关键点检测是一项重要的任务,广泛应用于人体姿态估计、动物行为分析、工业检测等场景。Label Studio 作为一款流行的数据标注工具,提供了灵活的关键点标注功能。然而,当我们需要将标注数据用于 YOLO 模型训练时,需要进行格式转换。本文将详细介绍如何将 Label Studio 的关键点标注数据转换为 YOLO 格式。
两种标注格式解析
Label Studio 关键点标注格式
Label Studio 的关键点标注采用 JSON 格式存储,主要特点包括:
- 使用
keypointlabels类型表示关键点 - 每个关键点包含 x、y 坐标和宽度信息
- 坐标以百分比形式表示(0-100%)
- 关键点通常与边界框关联,形成完整的对象标注
YOLO 关键点格式
YOLO 的关键点格式要求:
- 每个图像对应一个文本文件
- 每行表示一个对象实例
- 格式规范:
<class-index> <x_center> <y_center> <width> <height> <px1> <py1> <p1-visibility> ... <pxn> <pyn> <pn-visibility> - 所有坐标归一化到 [0,1] 范围
- 可选包含关键点可见性信息
格式转换的核心思路
转换过程需要解决以下几个关键问题:
- 数据结构映射:将 Label Studio 的层级结构映射为 YOLO 的扁平结构
- 坐标转换:将百分比坐标转换为归一化坐标
- 关键点关联:正确处理关键点与边界框的对应关系
- 标签映射:将文本标签转换为数字索引
转换实现详解
1. 解析 Label Studio JSON
首先需要解析 Label Studio 的 JSON 文件,提取以下信息:
- 图像基本信息(宽度、高度)
- 边界框标注(位置、类别)
- 关键点标注(位置、类别、关联关系)
2. 建立边界框与关键点的关联
在 Label Studio 中,关键点与边界框的关联有两种方式:
- ParentID 方式:关键点通过 parentID 字段直接关联到边界框
- Relation 方式:通过独立的 relation 对象建立关联
推荐使用 ParentID 方式,因为它更直观且处理更简单。
3. 坐标系统转换
需要进行两次坐标转换:
- 将百分比坐标(0-100)转换为归一化坐标(0-1)
- 将边界框的左上角坐标转换为中心点坐标
4. 关键点排序与可见性处理
根据模型需求,需要:
- 确保关键点按预定义顺序排列
- 处理可见性信息(如有)
实践建议
- 标注模板优化:在 Label Studio 中,建议使用 ParentID 方式组织标注,这能简化后续处理
- 数据验证:转换后应进行可视化验证,确保标注位置准确
- 批量处理:对于大规模数据集,建议实现批量转换脚本
- 版本控制:保留原始标注文件和转换脚本,便于追溯和复现
常见问题解决方案
- 缺少图像尺寸信息:可以从边界框标注中提取 original_width 和 original_height
- 关键点顺序混乱:建立明确的标签到索引的映射表
- 关联关系丢失:检查标注时是否正确建立了关键点与边界框的关联
结语
将 Label Studio 的关键点标注转换为 YOLO 格式是训练姿态估计模型的重要前置步骤。通过理解两种格式的差异,建立正确的映射关系,并注意处理过程中的细节问题,我们可以高效地完成这一转换工作,为后续的模型训练奠定良好基础。
在实际应用中,建议根据具体项目需求对转换脚本进行调整,并建立完善的数据验证机制,确保标注质量满足模型训练的要求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
648
149
Ascend Extension for PyTorch
Python
210
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
655
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.16 K
638
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216