GLM-4多卡部署中的长文本处理异常问题分析与解决方案
2025-06-03 14:51:14作者:郦嵘贵Just
问题背景
在GLM-4-9b-chat模型的实际部署中,开发者发现当使用多GPU(如双RTX 4090)运行修改后的openai_api_server.py处理长文本时,模型会出现输出异常现象。具体表现为:在处理特定长度的输入文本时,模型会输出无意义的重复内容(如"铯领柏"无限循环),而非预期的关键词提取结果。
环境配置
- 硬件环境:双NVIDIA RTX 4090 GPU
- 软件环境:
- Python 3.11
- PyTorch 2.3.0
- CUDA 12.1
- 驱动版本:535/550(问题均存在)
- 模型版本:通过ModelScope获取的最新GLM-4-9b-chat模型文件
关键修改点
开发者对原始openai_api_server.py进行了三处重要修改:
- 将MAX_MODEL_LENGTH从默认值调整为32000,以支持更长上下文
- 修改max_tokens参数从1024调整为16000,扩展输出长度限制
- 将tensor_parallel_size参数设置为2,启用双卡并行计算
问题现象深度分析
经过多次测试和验证,发现问题与输入文本的格式规范密切相关。当用户输入的prompt文本中:
- 在message的content字段前后缺少换行符时
- 特别是当content内容较长时(超过一定长度阈值)
模型容易出现输出异常。这种现象的根本原因在于:
- 文本边界识别问题:LLM模型需要明确的文本边界标识(如换行符)来确定输入结束位置
- 多卡并行计算的同步问题:在多GPU环境下,文本分片的边界处理可能更加敏感
- 长文本处理的特殊性:长文本上下文需要更精确的边界标记
解决方案
-
输入规范化处理:
- 在所有message的content字段前后强制添加换行符
- 使用三重引号('''content''')包裹长文本内容
-
代码层面的改进建议:
# 在构造prompt时添加格式检查 def format_content(content): if not content.startswith('\n'): content = '\n' + content if not content.endswith('\n'): content = content + '\n' return content -
部署最佳实践:
- 对于长文本处理场景,建议预先对输入进行规范化处理
- 在多卡部署时,特别注意文本分片的边界对齐
技术启示
这一案例揭示了LLM部署中的几个重要技术要点:
- 输入格式的严谨性:即使是现代大模型,输入格式的规范性仍然至关重要
- 多卡部署的特殊性:并行计算会放大某些在单卡环境下不明显的问题
- 长文本处理的挑战:随着上下文窗口的扩大,输入输出的规范化要求更高
结论
GLM-4作为强大的开源大模型,在多卡部署和长文本处理方面展现出优秀潜力,但在实际应用中需要注意输入输出的规范化处理。通过本文介绍的方法,开发者可以有效避免类似问题的发生,充分发挥模型在多GPU环境下的性能优势。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C069
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
460
3.43 K
暂无简介
Dart
713
170
Ascend Extension for PyTorch
Python
267
304
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
186
68
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
841
417
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
434
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119