GLM-4多卡部署中的长文本处理异常问题分析与解决方案
2025-06-03 16:28:39作者:郦嵘贵Just
问题背景
在GLM-4-9b-chat模型的实际部署中,开发者发现当使用多GPU(如双RTX 4090)运行修改后的openai_api_server.py处理长文本时,模型会出现输出异常现象。具体表现为:在处理特定长度的输入文本时,模型会输出无意义的重复内容(如"铯领柏"无限循环),而非预期的关键词提取结果。
环境配置
- 硬件环境:双NVIDIA RTX 4090 GPU
- 软件环境:
- Python 3.11
- PyTorch 2.3.0
- CUDA 12.1
- 驱动版本:535/550(问题均存在)
- 模型版本:通过ModelScope获取的最新GLM-4-9b-chat模型文件
关键修改点
开发者对原始openai_api_server.py进行了三处重要修改:
- 将MAX_MODEL_LENGTH从默认值调整为32000,以支持更长上下文
- 修改max_tokens参数从1024调整为16000,扩展输出长度限制
- 将tensor_parallel_size参数设置为2,启用双卡并行计算
问题现象深度分析
经过多次测试和验证,发现问题与输入文本的格式规范密切相关。当用户输入的prompt文本中:
- 在message的content字段前后缺少换行符时
- 特别是当content内容较长时(超过一定长度阈值)
模型容易出现输出异常。这种现象的根本原因在于:
- 文本边界识别问题:LLM模型需要明确的文本边界标识(如换行符)来确定输入结束位置
- 多卡并行计算的同步问题:在多GPU环境下,文本分片的边界处理可能更加敏感
- 长文本处理的特殊性:长文本上下文需要更精确的边界标记
解决方案
-
输入规范化处理:
- 在所有message的content字段前后强制添加换行符
- 使用三重引号('''content''')包裹长文本内容
-
代码层面的改进建议:
# 在构造prompt时添加格式检查 def format_content(content): if not content.startswith('\n'): content = '\n' + content if not content.endswith('\n'): content = content + '\n' return content -
部署最佳实践:
- 对于长文本处理场景,建议预先对输入进行规范化处理
- 在多卡部署时,特别注意文本分片的边界对齐
技术启示
这一案例揭示了LLM部署中的几个重要技术要点:
- 输入格式的严谨性:即使是现代大模型,输入格式的规范性仍然至关重要
- 多卡部署的特殊性:并行计算会放大某些在单卡环境下不明显的问题
- 长文本处理的挑战:随着上下文窗口的扩大,输入输出的规范化要求更高
结论
GLM-4作为强大的开源大模型,在多卡部署和长文本处理方面展现出优秀潜力,但在实际应用中需要注意输入输出的规范化处理。通过本文介绍的方法,开发者可以有效避免类似问题的发生,充分发挥模型在多GPU环境下的性能优势。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136