AWS Deep Learning Containers 发布 PyTorch 2.3.0 推理容器镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预配置深度学习环境容器镜像,集成了主流深度学习框架及其依赖项,帮助开发者快速部署和运行深度学习工作负载。这些容器镜像经过优化,可直接在Amazon SageMaker、Amazon ECS、Amazon EKS等AWS服务上使用。
近日,AWS Deep Learning Containers项目发布了针对PyTorch 2.3.0框架的推理专用容器镜像更新。本次更新主要包含两个重要镜像版本,分别支持CPU和GPU计算环境,均基于Python 3.11和Ubuntu 20.04操作系统构建。
镜像版本特性
CPU版本镜像
该镜像专为CPU计算环境优化,预装了PyTorch 2.3.0框架的CPU版本及其相关组件。镜像中包含了完整的PyTorch生态系统工具链,如TorchServe模型服务框架(0.11.0版本)、TorchModelArchiver模型归档工具等。此外,还预装了常用的数据处理和科学计算库,包括NumPy 1.26.4、Pandas 2.2.2、SciPy 1.13.1等,为机器学习推理任务提供了全面的支持。
GPU版本镜像
GPU版本镜像基于CUDA 12.1计算平台构建,包含了PyTorch 2.3.0的CUDA优化版本。除了包含CPU版本的所有功能外,还预装了CUDA相关的库文件,如cuBLAS 12.1和cuDNN 8,确保能够充分利用NVIDIA GPU的并行计算能力。该镜像特别适合需要高性能推理的深度学习应用场景。
技术栈组成
两个镜像版本都采用了统一的技术栈设计理念,主要包含以下核心组件:
- 深度学习框架:PyTorch 2.3.0(CPU/GPU版本)
- 辅助工具:
- TorchServe 0.11.0(模型服务框架)
- TorchModelArchiver 0.11.0(模型打包工具)
- TorchVision 0.18.0(计算机视觉库)
- TorchAudio 2.3.0(音频处理库)
- 数据处理库:
- NumPy 1.26.4
- Pandas 2.2.2
- OpenCV 4.10.0
- Pillow 10.3.0
- AWS集成组件:
- AWS CLI 1.33.4
- Boto3 1.34.122
- SageMaker PyTorch Inference 2.0.24
应用场景
这些预构建的容器镜像特别适合以下应用场景:
- 模型部署:通过集成的TorchServe框架,开发者可以快速将训练好的PyTorch模型部署为可扩展的推理服务。
- 批量推理:利用预装的数据处理库,可以高效处理大批量推理任务。
- 云端AI服务:与Amazon SageMaker等AWS服务无缝集成,简化云端AI服务的构建流程。
- 开发测试:提供一致的开发环境,便于在不同阶段进行模型验证和性能测试。
技术优势
- 版本一致性:确保PyTorch框架与其生态组件(如TorchVision、TorchAudio)版本严格匹配,避免兼容性问题。
- 性能优化:针对AWS基础设施进行了专门优化,包括计算和网络性能调优。
- 安全性:基于Ubuntu 20.04 LTS构建,定期接收安全更新。
- 易用性:预装常用工具和库,减少环境配置时间。
对于需要在AWS云平台上部署PyTorch推理服务的团队,这些预构建的容器镜像可以显著降低运维复杂度,加快模型从开发到生产的转化速度。开发者可以直接使用这些镜像,也可以基于它们进行定制化扩展,满足特定业务需求。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00