AWS Deep Learning Containers 发布 PyTorch 2.3.0 推理容器镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预配置深度学习环境容器镜像,集成了主流深度学习框架及其依赖项,帮助开发者快速部署和运行深度学习工作负载。这些容器镜像经过优化,可直接在Amazon SageMaker、Amazon ECS、Amazon EKS等AWS服务上使用。
近日,AWS Deep Learning Containers项目发布了针对PyTorch 2.3.0框架的推理专用容器镜像更新。本次更新主要包含两个重要镜像版本,分别支持CPU和GPU计算环境,均基于Python 3.11和Ubuntu 20.04操作系统构建。
镜像版本特性
CPU版本镜像
该镜像专为CPU计算环境优化,预装了PyTorch 2.3.0框架的CPU版本及其相关组件。镜像中包含了完整的PyTorch生态系统工具链,如TorchServe模型服务框架(0.11.0版本)、TorchModelArchiver模型归档工具等。此外,还预装了常用的数据处理和科学计算库,包括NumPy 1.26.4、Pandas 2.2.2、SciPy 1.13.1等,为机器学习推理任务提供了全面的支持。
GPU版本镜像
GPU版本镜像基于CUDA 12.1计算平台构建,包含了PyTorch 2.3.0的CUDA优化版本。除了包含CPU版本的所有功能外,还预装了CUDA相关的库文件,如cuBLAS 12.1和cuDNN 8,确保能够充分利用NVIDIA GPU的并行计算能力。该镜像特别适合需要高性能推理的深度学习应用场景。
技术栈组成
两个镜像版本都采用了统一的技术栈设计理念,主要包含以下核心组件:
- 深度学习框架:PyTorch 2.3.0(CPU/GPU版本)
- 辅助工具:
- TorchServe 0.11.0(模型服务框架)
- TorchModelArchiver 0.11.0(模型打包工具)
- TorchVision 0.18.0(计算机视觉库)
- TorchAudio 2.3.0(音频处理库)
- 数据处理库:
- NumPy 1.26.4
- Pandas 2.2.2
- OpenCV 4.10.0
- Pillow 10.3.0
- AWS集成组件:
- AWS CLI 1.33.4
- Boto3 1.34.122
- SageMaker PyTorch Inference 2.0.24
应用场景
这些预构建的容器镜像特别适合以下应用场景:
- 模型部署:通过集成的TorchServe框架,开发者可以快速将训练好的PyTorch模型部署为可扩展的推理服务。
- 批量推理:利用预装的数据处理库,可以高效处理大批量推理任务。
- 云端AI服务:与Amazon SageMaker等AWS服务无缝集成,简化云端AI服务的构建流程。
- 开发测试:提供一致的开发环境,便于在不同阶段进行模型验证和性能测试。
技术优势
- 版本一致性:确保PyTorch框架与其生态组件(如TorchVision、TorchAudio)版本严格匹配,避免兼容性问题。
- 性能优化:针对AWS基础设施进行了专门优化,包括计算和网络性能调优。
- 安全性:基于Ubuntu 20.04 LTS构建,定期接收安全更新。
- 易用性:预装常用工具和库,减少环境配置时间。
对于需要在AWS云平台上部署PyTorch推理服务的团队,这些预构建的容器镜像可以显著降低运维复杂度,加快模型从开发到生产的转化速度。开发者可以直接使用这些镜像,也可以基于它们进行定制化扩展,满足特定业务需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00