Stan语言中的分类分布对数概率与随机数生成函数解析
2025-06-29 18:00:50作者:温玫谨Lighthearted
概述
在Stan概率编程语言中,分类分布(categorical distribution)是离散概率分布中非常重要的一种。近期Stan社区讨论了一个关于优化分类分布对数概率计算和随机数生成的技术问题,本文将深入解析相关概念和最佳实践。
分类分布的基本概念
分类分布是描述K个可能结果的离散概率分布,每个结果k ∈ {1,...,K}都有一个对应的概率θₖ。在Stan中,我们通常处理对数概率空间,这带来了计算上的优势:
- 数值稳定性:对数转换避免了小概率相乘导致的数值下溢
- 计算效率:对数空间中的加法相当于原始概率空间的乘法
对数概率质量函数(lpmf)的实现
在Stan中,categorical_log_lpmf函数接受对数概率向量作为输入。这种设计允许用户直接传递对数概率,而不需要先进行指数运算再归一化。例如:
vector[K] log_p = ...; // 对数概率向量
int y = ...; // 观察值
target += categorical_log_lpmf(y | log_p);
这种实现方式比先计算exp(log_p)再调用标准分类分布更高效且数值稳定。
对数空间的随机数生成
Stan提供了categorical_logit_rng函数用于从对数概率生成随机数。这个函数名称中的"logit"可能会引起一些混淆,实际上它处理的是未归一化的对数概率(unnormalized log probabilities),而非严格意义上的log odds。
使用示例:
vector[K] log_p = ...; // 对数概率向量
int y = categorical_logit_rng(log_p); // 从对数概率生成随机数
实际应用案例
在N-mixture模型中,我们需要对潜在丰度进行后验采样。使用对数概率可以直接高效地实现:
generated quantities {
vector[I] log_lik;
array[I] int N;
{
vector[K] lp;
for (i in 1:I) {
for (k in max_y[i]:K) {
lp[k] = poisson_lpmf(k | lambda[i]) + binomial_lpmf(y[i, 1:J[i]] | k, p[i, 1:J[i]]);
}
log_lik[i] = log_sum_exp(lp[max_y[i]:K]);
N[i] = categorical_logit_rng(lp[max_y[i]:K] - log_lik[i]) + max_y[i] - 1;
}
}
}
这种方法避免了显式的指数运算和归一化步骤,提高了计算效率和数值稳定性。
技术细节解析
-
对数概率与logit的区别:
- 对数概率是直接对概率取自然对数
- logit是log(p/(1-p)),常用于二分类问题
- 在多分类情况下,softmax函数的输入实际上是未归一化的对数概率
-
数值稳定性考虑:
log_sum_exp操作确保了对数概率空间中的归一化- 减去最大值(log_lik)进一步提高了数值稳定性
-
性能优化:
- 避免中间转换步骤减少了计算开销
- 向量化操作充分利用现代CPU的SIMD指令
最佳实践建议
- 在Stan模型中,尽量保持计算在对数概率空间进行
- 使用
categorical_logit_rng而非手动指数化后再调用categorical_rng - 对于复杂的概率计算,先计算各分量对数概率再组合
- 注意边界情况和数值稳定性问题
总结
Stan语言提供了完整的对数概率空间操作函数,理解并正确使用这些函数可以显著提高模型的效率和稳定性。特别是在处理分类分布时,直接使用对数概率接口(categorical_logit_rng)比传统方法更优。开发者应当熟悉这些概念,以编写出更高效、更稳定的概率程序。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143