MobileNetV3-PyTorch 使用教程
2024-08-18 15:01:41作者:胡唯隽
项目介绍
MobileNetV3-PyTorch 是一个基于 PyTorch 框架实现的 MobileNetV3 模型。MobileNetV3 是由 Google 提出的轻量级神经网络架构,适用于移动和边缘设备。该项目旨在提供一个易于使用和高效的实现,以便开发者可以在自己的项目中快速集成和使用 MobileNetV3 模型。
项目快速启动
安装依赖
首先,确保你已经安装了 PyTorch 和 torchvision。如果没有安装,可以通过以下命令进行安装:
pip install torch torchvision
克隆项目
使用以下命令克隆项目到本地:
git clone https://github.com/leaderj1001/MobileNetV3-Pytorch.git
cd MobileNetV3-Pytorch
运行示例
项目中包含一个简单的示例脚本,用于演示如何加载和使用 MobileNetV3 模型。运行以下命令来执行示例:
python example.py
示例代码 example.py 如下:
import torch
from mobilenetv3 import mobilenetv3_small
# 加载预训练模型
model = mobilenetv3_small(pretrained=True)
model.eval()
# 创建一个随机输入
input_tensor = torch.randn(1, 3, 224, 224)
# 前向传播
with torch.no_grad():
output = model(input_tensor)
print(output)
应用案例和最佳实践
图像分类
MobileNetV3 主要用于图像分类任务。以下是一个简单的图像分类示例:
import torch
from PIL import Image
from torchvision import transforms
from mobilenetv3 import mobilenetv3_small
# 加载预训练模型
model = mobilenetv3_small(pretrained=True)
model.eval()
# 图像预处理
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# 加载图像
image = Image.open("path_to_image.jpg")
input_tensor = preprocess(image)
input_batch = input_tensor.unsqueeze(0)
# 前向传播
with torch.no_grad():
output = model(input_batch)
# 获取预测结果
_, predicted_idx = torch.max(output, 1)
print(predicted_idx)
迁移学习
MobileNetV3 也可以用于迁移学习。以下是一个简单的迁移学习示例:
import torch
import torch.nn as nn
import torch.optim as optim
from mobilenetv3 import mobilenetv3_small
# 加载预训练模型
model = mobilenetv3_small(pretrained=True)
# 替换最后一层
num_classes = 10
model.classifier[3] = nn.Linear(model.classifier[3].in_features, num_classes)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 训练循环
for epoch in range(10):
for inputs, labels in dataloader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
典型生态项目
torchvision
torchvision 是 PyTorch 的一个官方库,提供了许多计算机视觉相关的工具和模型。MobileNetV3 也可以通过 torchvision 库来使用:
import torchvision.models as models
model = models.mobilenet_v3_small(pretrained=True)
PyTorch Hub
PyTorch Hub 是一个预训练模型库,可以通过以下
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355