oneDNN项目在AArch64架构下的卷积量化测试失败问题分析
2025-06-18 11:06:23作者:袁立春Spencer
问题背景
在oneDNN项目最近的量化重构工作后,开发团队发现AArch64架构的持续集成测试中出现了一个卷积单元测试失败的情况。该问题出现在test_graph_unit_dnnl_convolution_cpu测试套件中的ConvBiasAddEltwise测试用例中,具体表现为计算结果与预期参考值之间存在微小差异。
问题表现
测试失败的具体差异如下:
- 实际计算结果(dst[i]): -0.072591752
- 预期参考值(param.ref_dst[I]): -0.072591871
虽然数值差异非常小(约1.19e-7),但已经超出了测试允许的容差范围,导致测试失败。这个问题在AArch64架构的c7g AWS实例上可稳定复现。
技术分析
这个问题出现在最近的量化重构提交(af1410c2)之后,表明与量化计算流程的修改有关。从技术角度看,这种微小的数值差异可能源于以下几个方面的变化:
- 量化计算精度变化:重构可能改变了量化过程中的舍入方式或计算顺序
- 硬件特性差异:AArch64架构的浮点计算单元可能与x86架构存在细微差异
- 测试容差设置:当前的测试容差可能没有充分考虑不同硬件架构下的计算差异
解决方案思路
针对这类问题,通常有以下几种解决方向:
- 调整测试容差:适当放宽测试的数值比较容差,考虑硬件差异
- 优化量化算法:确保量化过程在不同架构下的一致性
- 架构特定优化:为AArch64架构实现特定的量化计算路径
问题影响
虽然数值差异很小,但这种测试失败会影响:
- 持续集成流程的稳定性
- 跨平台兼容性的信心
- 量化功能的可靠性验证
结论
这个问题的出现提醒我们在进行量化相关优化时,需要特别注意跨平台兼容性。对于深度学习框架而言,微小的数值差异虽然可能不影响整体模型效果,但会破坏测试的确定性。建议开发团队在修复此问题时,不仅要解决当前测试失败,还应考虑建立更健壮的跨平台数值比较机制。
对于AArch64平台的用户,在问题修复前可以暂时忽略这个特定测试用例的失败,因为它不会影响主要功能的正确性。开发团队已经确认会优先处理这个问题,确保量化功能在所有支持平台上都能稳定工作。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp博客页面工作坊中的断言方法优化建议7 freeCodeCamp论坛排行榜项目中的错误日志规范要求8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp音乐播放器项目中的函数调用问题解析10 freeCodeCamp课程页面空白问题的技术分析与解决方案
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
237
2.36 K
仓颉编程语言运行时与标准库。
Cangjie
122
96
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
83
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
77
109
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
997
588
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
114
LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
26