首页
/ oneDNN项目在AArch64架构下的卷积量化测试失败问题分析

oneDNN项目在AArch64架构下的卷积量化测试失败问题分析

2025-06-18 08:52:52作者:袁立春Spencer

问题背景

在oneDNN项目最近的量化重构工作后,开发团队发现AArch64架构的持续集成测试中出现了一个卷积单元测试失败的情况。该问题出现在test_graph_unit_dnnl_convolution_cpu测试套件中的ConvBiasAddEltwise测试用例中,具体表现为计算结果与预期参考值之间存在微小差异。

问题表现

测试失败的具体差异如下:

  • 实际计算结果(dst[i]): -0.072591752
  • 预期参考值(param.ref_dst[I]): -0.072591871

虽然数值差异非常小(约1.19e-7),但已经超出了测试允许的容差范围,导致测试失败。这个问题在AArch64架构的c7g AWS实例上可稳定复现。

技术分析

这个问题出现在最近的量化重构提交(af1410c2)之后,表明与量化计算流程的修改有关。从技术角度看,这种微小的数值差异可能源于以下几个方面的变化:

  1. 量化计算精度变化:重构可能改变了量化过程中的舍入方式或计算顺序
  2. 硬件特性差异:AArch64架构的浮点计算单元可能与x86架构存在细微差异
  3. 测试容差设置:当前的测试容差可能没有充分考虑不同硬件架构下的计算差异

解决方案思路

针对这类问题,通常有以下几种解决方向:

  1. 调整测试容差:适当放宽测试的数值比较容差,考虑硬件差异
  2. 优化量化算法:确保量化过程在不同架构下的一致性
  3. 架构特定优化:为AArch64架构实现特定的量化计算路径

问题影响

虽然数值差异很小,但这种测试失败会影响:

  • 持续集成流程的稳定性
  • 跨平台兼容性的信心
  • 量化功能的可靠性验证

结论

这个问题的出现提醒我们在进行量化相关优化时,需要特别注意跨平台兼容性。对于深度学习框架而言,微小的数值差异虽然可能不影响整体模型效果,但会破坏测试的确定性。建议开发团队在修复此问题时,不仅要解决当前测试失败,还应考虑建立更健壮的跨平台数值比较机制。

对于AArch64平台的用户,在问题修复前可以暂时忽略这个特定测试用例的失败,因为它不会影响主要功能的正确性。开发团队已经确认会优先处理这个问题,确保量化功能在所有支持平台上都能稳定工作。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
163
2.05 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
199
279
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
951
557
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
70
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0