Ragas项目中的语言适配问题与解决方案
2025-05-26 14:04:21作者:盛欣凯Ernestine
概述
Ragas作为一个评估RAG系统的开源框架,其核心功能之一是对不同语言的支持。在项目开发过程中,发现了一个关于语言适配的重要问题:当使用sentence_segmenter(句子分割器)的指标在初始化后立即进行语言适配,而不是在adapt函数中进行适配,这可能导致语言设置不一致的问题。
问题分析
在Ragas的Faithfulness指标实现中,sentence_segmenter的初始化发生在__post_init__方法中,而语言适配则发生在adapt方法中。这种设计存在潜在问题:
- 初始化时机不当:
sentence_segmenter在对象初始化时就确定了语言,而此时可能还没有调用adapt方法进行语言适配 - 状态不一致:如果后续调用
adapt方法改变语言,sentence_segmenter的语言设置不会自动更新 - 设计原则违背:所有与语言相关的适配应该集中在
adapt方法中完成,以保证一致性
解决方案
针对这一问题,Ragas团队在v0.2版本中进行了重要改进:
- 统一适配逻辑:将所有语言相关的适配操作都集中在
adapt方法中 - 动态更新机制:当调用
adapt方法时,不仅更新提示模板,还会更新sentence_segmenter的语言设置 - 更清晰的接口设计:通过
PromptMixin类提供了标准化的语言适配接口
实现细节
改进后的实现关键点包括:
def adapt(self, language: str, cache_dir: t.Optional[str] = None) -> None:
assert self.llm is not None, "LLM is not set"
logger.info(f"Adapting Faithfulness metric to {language}")
# 适配提示模板
self.nli_statements_message = self.nli_statements_message.adapt(
language, self.llm, cache_dir
)
self.statement_prompt = self.statement_prompt.adapt(
language, self.llm, cache_dir
)
# 适配句子分割器
if self.sentence_segmenter is not None:
self.sentence_segmenter = get_segmenter(language=language, clean=False)
技术意义
这一改进带来了几个重要好处:
- 一致性保证:确保所有组件都使用相同的语言设置
- 更好的可维护性:语言适配逻辑集中在一处,便于维护和扩展
- 更清晰的架构:遵循单一职责原则,
adapt方法真正成为语言适配的唯一入口
迁移建议
对于从v0.1迁移到v0.2的用户,需要注意:
- 检查所有自定义指标中是否正确处理了语言适配
- 确保在调用
adapt方法后,所有依赖语言的组件都已更新 - 测试不同语言场景下的指标行为是否一致
总结
Ragas项目通过这一改进,不仅解决了一个具体的技术问题,更重要的是确立了更清晰的架构设计原则。这种集中处理语言适配的方式,为框架的多语言支持奠定了更坚实的基础,也体现了优秀开源项目不断自我完善的精神。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
308
2.71 K
仓颉编译器源码及 cjdb 调试工具。
C++
123
780
暂无简介
Dart
598
132
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
615
Ascend Extension for PyTorch
Python
141
170
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
759
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232