GLM-4项目微调后工具调用异常问题分析与解决方案
问题背景
在使用GLM-4开源大语言模型时,许多开发者发现通过LLaMA-Factory对GLM-4-9B-Chat模型进行LoRA微调后,虽然普通对话功能正常,但工具调用(Function Call)功能会出现异常。具体表现为当尝试使用工具调用时,系统会抛出"TypeError: can only concatenate str (not "NoneType") to str"的错误。
技术分析
经过深入分析,这个问题源于LLaMA-Factory在导出合并后的模型时,会覆盖原始GLM-4-9B-Chat模型的chat_template配置。chat_template是Transformers库中用于定义对话格式的重要模板,它决定了模型如何处理包含工具调用的特殊对话结构。
GLM-4模型原本包含一个精心设计的chat_template,能够正确处理工具调用的特殊格式。但当使用LLaMA-Factory进行微调并合并权重后,这个关键模板被替换成了一个更简单的版本,导致系统无法正确解析工具调用的消息结构。
解决方案
要解决这个问题,需要手动恢复模型原始的chat_template配置。具体步骤如下:
- 找到微调合并后模型的tokenizer_config.json文件
- 修改其中的chat_template字段,将其恢复为GLM-4原始的工具调用支持模板
- 重新启动服务
以下是修复后的chat_template关键部分示例(已简化):
"[gMASK]<sop>{% for item in messages %}{% if item['tools'] is defined %}<|system|>
你是一个名为GLM-4的人工智能助手...
# 可用工具{% set tools = item['tools'] %}{% for tool in tools %}
## {{ tool['function']['name'] }}
{{ tool['function'] | tojson(indent=4) }}
在调用上述函数时,请使用Json格式表示调用的参数...
{% endfor %}{% endif %}{% if item['content'] %}<|{{ item['role'] }}|>{{ item['metadata'] }}
{{ item['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}"
技术建议
-
微调数据准备:在进行微调时,建议在训练数据中加入工具调用的示例,以保持模型这方面的能力。
-
精度选择:虽然V100显卡理论上不支持bfloat16,但可以通过fp32模拟,不过要注意可能出现的精度问题。
-
模型合并:在合并LoRA权重时,建议检查所有配置文件是否被正确保留,特别是tokenizer相关的配置。
-
测试验证:微调后应全面测试模型各项功能,包括基础对话、工具调用等核心能力。
总结
GLM-4作为一款功能强大的开源大模型,其工具调用能力是其重要特性之一。通过正确配置chat_template,开发者可以在保持微调效果的同时,不损失原有的工具调用功能。这个问题也提醒我们,在进行模型微调时,不仅要关注模型权重,还要注意相关配置文件的完整性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00