GLM-4项目微调后工具调用异常问题分析与解决方案
问题背景
在使用GLM-4开源大语言模型时,许多开发者发现通过LLaMA-Factory对GLM-4-9B-Chat模型进行LoRA微调后,虽然普通对话功能正常,但工具调用(Function Call)功能会出现异常。具体表现为当尝试使用工具调用时,系统会抛出"TypeError: can only concatenate str (not "NoneType") to str"的错误。
技术分析
经过深入分析,这个问题源于LLaMA-Factory在导出合并后的模型时,会覆盖原始GLM-4-9B-Chat模型的chat_template配置。chat_template是Transformers库中用于定义对话格式的重要模板,它决定了模型如何处理包含工具调用的特殊对话结构。
GLM-4模型原本包含一个精心设计的chat_template,能够正确处理工具调用的特殊格式。但当使用LLaMA-Factory进行微调并合并权重后,这个关键模板被替换成了一个更简单的版本,导致系统无法正确解析工具调用的消息结构。
解决方案
要解决这个问题,需要手动恢复模型原始的chat_template配置。具体步骤如下:
- 找到微调合并后模型的tokenizer_config.json文件
- 修改其中的chat_template字段,将其恢复为GLM-4原始的工具调用支持模板
- 重新启动服务
以下是修复后的chat_template关键部分示例(已简化):
"[gMASK]<sop>{% for item in messages %}{% if item['tools'] is defined %}<|system|>
你是一个名为GLM-4的人工智能助手...
# 可用工具{% set tools = item['tools'] %}{% for tool in tools %}
## {{ tool['function']['name'] }}
{{ tool['function'] | tojson(indent=4) }}
在调用上述函数时,请使用Json格式表示调用的参数...
{% endfor %}{% endif %}{% if item['content'] %}<|{{ item['role'] }}|>{{ item['metadata'] }}
{{ item['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}"
技术建议
-
微调数据准备:在进行微调时,建议在训练数据中加入工具调用的示例,以保持模型这方面的能力。
-
精度选择:虽然V100显卡理论上不支持bfloat16,但可以通过fp32模拟,不过要注意可能出现的精度问题。
-
模型合并:在合并LoRA权重时,建议检查所有配置文件是否被正确保留,特别是tokenizer相关的配置。
-
测试验证:微调后应全面测试模型各项功能,包括基础对话、工具调用等核心能力。
总结
GLM-4作为一款功能强大的开源大模型,其工具调用能力是其重要特性之一。通过正确配置chat_template,开发者可以在保持微调效果的同时,不损失原有的工具调用功能。这个问题也提醒我们,在进行模型微调时,不仅要关注模型权重,还要注意相关配置文件的完整性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









