GLM-4模型微调后输出异常问题分析与解决方案
2025-06-03 20:17:52作者:瞿蔚英Wynne
问题现象描述
在使用GLM-4进行模型微调后,用户在执行推理(inference)时遇到了输出大量感叹号(!!!!!!!!)的异常现象。具体表现为:
- 微调过程中loss值骤降至0并保持为0
- 推理时无论输入什么内容,模型都输出大量感叹号
- 当batch size设置超过8时,输出结果为空
环境配置分析
问题出现的环境配置为:
- 操作系统:Ubuntu 22.04
- CUDA版本:12.7
- Python版本:3.12.7
- PyTorch版本:2.5.0
- Transformers版本:4.44.0
根本原因探究
经过技术分析,该问题主要由以下几个因素导致:
-
PyTorch版本兼容性问题:用户使用的PyTorch 2.5.0与GLM-4存在兼容性问题,导致微调过程中出现梯度异常(nan)和loss值异常下降。
-
微调过程异常:loss值骤降至0并保持为0,表明模型在微调过程中未能正常学习,参数更新失效,最终导致模型输出无意义的符号。
-
推理参数配置不当:用户禁用了do_sample参数但设置了temperature值,这种参数组合在生成式模型中会产生冲突。
-
batch size设置过大:当batch size超过8时,显存或计算资源不足导致输出为空。
解决方案
-
版本降级:
- 将PyTorch降级至2.4.0版本
- 配套使用Transformers 4.45.0版本
- 确保torchaudio和torchvision版本与PyTorch主版本匹配
-
微调过程监控:
- 微调初期密切监控loss变化
- 如发现loss异常下降,立即停止训练并检查数据预处理和模型配置
-
推理参数优化:
generate_kwargs = { "max_new_tokens": 128, "do_sample": True, # 必须启用采样 "temperature": 0.95, "top_p": 0.8, # 建议添加top-p采样 "repetition_penalty": 1.2 # 防止重复生成 } -
batch size调整:
- 根据GPU显存容量合理设置batch size
- 对于A100显卡,建议初始batch size设为4-8,逐步增加测试
最佳实践建议
-
环境配置:
- 严格按照GLM-4官方推荐的版本组合搭建环境
- 使用conda或venv创建隔离的Python环境
-
微调过程:
- 先在小规模数据集上进行测试训练
- 监控loss曲线、梯度变化等关键指标
- 使用混合精度训练(fp16/bf16)时注意梯度缩放
-
推理验证:
- 微调后先在验证集上测试模型表现
- 使用多样化的prompt测试模型生成质量
- 逐步调整生成参数(temperature, top_p等)
-
资源管理:
- 使用nvidia-smi监控GPU显存使用情况
- 合理设置gradient_accumulation_steps平衡显存和batch size
总结
GLM-4作为大型语言模型,在微调和推理过程中需要特别注意环境配置和参数设置。通过版本兼容性调整、训练过程监控和合理的参数配置,可以有效避免输出异常等问题。建议用户在正式训练前,先进行小规模测试验证整个流程的正确性,确保模型能够正常学习和生成有意义的输出。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76