AWS Deep Learning Containers发布PyTorch ARM64架构推理镜像v1.10
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预配置深度学习环境容器镜像,它集成了主流深度学习框架及其依赖项,使开发者能够快速部署和运行深度学习工作负载。这些容器镜像经过优化,可直接在AWS云服务上使用,大幅简化了深度学习环境的搭建过程。
近日,AWS发布了针对ARM64架构的PyTorch推理镜像新版本v1.10,支持PyTorch 2.5.1框架。这一更新为使用ARM架构处理器的用户提供了更高效的深度学习推理解决方案。
镜像版本概览
本次发布的DLC镜像包含两个主要变体:
-
CPU版本:基于Ubuntu 22.04系统,预装PyTorch 2.5.1 CPU版本,支持Python 3.11环境。该镜像专为不需要GPU加速的推理任务设计,适合成本敏感型应用场景。
-
GPU版本:同样基于Ubuntu 22.04系统,预装PyTorch 2.5.1 GPU版本,支持CUDA 12.4和Python 3.11。此版本针对需要GPU加速的深度学习推理任务进行了优化,能够充分利用NVIDIA GPU的计算能力。
关键技术组件
两个版本的镜像都包含了深度学习开发所需的关键组件:
-
PyTorch生态系统:完整集成了PyTorch 2.5.1框架,以及配套的torchvision 0.20.1和torchaudio 2.5.1库,确保用户能够使用最新的PyTorch功能。
-
模型服务工具:预装了torchserve 0.12.0和torch-model-archiver 0.12.0,方便用户部署和管理PyTorch模型服务。
-
科学计算库:包含NumPy 2.1.3、SciPy 1.14.1和pandas 2.2.3等科学计算库,为数据处理和分析提供支持。
-
图像处理工具:集成OpenCV 4.10.0和Pillow 11.0.0,满足计算机视觉应用的需求。
-
AWS工具链:预装AWS CLI、boto3和botocore等AWS开发工具,便于与AWS云服务集成。
系统级优化
这些镜像在系统层面也进行了多项优化:
-
编译器支持:包含了GCC 11工具链和标准C++库,确保代码编译的高效性和兼容性。
-
CUDA生态:GPU版本完整支持CUDA 12.4生态,包括cuBLAS和cuDNN等加速库,最大化GPU计算性能。
-
开发工具:预装了Emacs等开发工具,方便用户直接在容器内进行代码编辑和调试。
应用场景
这些ARM64架构的PyTorch推理镜像特别适合以下场景:
-
边缘计算:在基于ARM处理器的边缘设备上部署轻量级深度学习模型。
-
成本优化:利用AWS Graviton处理器的性价比优势,降低云端推理成本。
-
模型服务:快速部署PyTorch模型服务,支持高并发推理请求。
-
开发测试:为ARM架构的PyTorch应用提供一致的开发和测试环境。
总结
AWS Deep Learning Containers的这次更新,为ARM64架构用户提供了更完善的PyTorch推理解决方案。通过预配置的优化环境和丰富的工具链,开发者可以专注于模型推理和应用开发,而无需花费大量时间在环境配置上。无论是CPU还是GPU版本,这些镜像都经过了AWS的严格测试和优化,能够提供稳定高效的推理性能。
对于正在使用或计划使用ARM架构进行PyTorch推理的用户,这些新版本的DLC镜像无疑是一个值得考虑的选择。它们不仅简化了部署流程,还能充分利用ARM处理器的性能特点,为深度学习应用提供可靠的基础环境。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00