ktransformers项目中的NUMA配置与内存优化实践
2025-05-16 07:15:18作者:霍妲思
在大型语言模型推理场景中,内存管理是一个关键的性能优化点。本文将以ktranformers项目为例,深入分析NUMA架构对内存占用的影响及优化方案。
NUMA架构对内存占用的影响
NUMA(Non-Uniform Memory Access)是现代多处理器系统中的一种内存架构设计,它将处理器和内存划分为多个节点(node),每个节点内的内存访问速度最快。在双路EPYC 9655这样的高端服务器平台上,默认配置下可能会为每个内存通道创建一个NUMA节点,导致系统出现24个NUMA节点的情况。
在ktranformers的moe.cpp实现中,内存管理策略会根据numa_num_configured_nodes系统调用返回的NUMA节点数量进行内存分配。这种设计会导致每个NUMA节点都保存一份模型参数的拷贝,当NUMA节点数量较多时,内存占用会呈线性增长。例如在24个NUMA节点的系统上,内存消耗可能达到预期的24倍。
优化方案与实践
BIOS层优化
最直接的解决方案是在BIOS层面调整NUMA配置:
- 进入服务器BIOS设置界面
- 查找NUMA相关配置选项(通常位于"Advanced"或"Processor"菜单下)
- 将NUMA模式从"每通道"(Per Channel)改为"每插槽"(Per Socket)
- 保存设置并重启系统
这种调整可以将NUMA节点数量从24个(每内存通道一个)减少到2个(每CPU插槽一个),显著降低内存占用。
软件层优化
对于无法修改BIOS设置的环境,ktranformers项目团队正在开发基于TP(Tensor Parallelism)的优化方案。这种方案可以避免NUMA带来的内存倍增问题,但需要等待后续版本发布。
最佳实践建议
- 在部署ktranformers前,先通过
numactl --hardware命令检查系统的NUMA配置 - 对于内存敏感的应用场景,优先考虑BIOS层的NUMA配置优化
- 关注项目更新,及时获取TP优化等新特性
- 在调试阶段,可以使用
numactl -N X -m Y命令将进程绑定到特定NUMA节点,但要注意这不能解决内存拷贝问题
通过合理的NUMA配置,可以在保证性能的同时,显著降低大型语言模型推理时的内存需求,使系统资源得到更高效的利用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178