Cheshire Cat AI核心项目中的递归URL爬取功能实现
2025-06-29 22:49:43作者:董灵辛Dennis
概述
在Cheshire Cat AI核心项目中,RabbitHole模块负责处理网页内容的抓取和存储。本文将深入探讨如何在该模块中实现递归URL爬取功能,这一功能允许用户不仅抓取指定网页的内容,还能自动跟踪并抓取该网页链接的所有子页面内容。
功能需求分析
传统网页抓取功能通常只能处理单个URL或预定义的URL列表,这在处理大型网站或包含多层链接结构的网页时显得效率低下。递归URL爬取功能可以解决以下问题:
- 自动发现并抓取目标网页链接的所有子页面
- 支持配置爬取深度、排除特定目录等高级选项
- 提供更高效的大规模网页内容获取方式
技术实现方案
接口设计
在路由层(routes/upload.py)中,我们扩展了原有的/web接口,新增了递归爬取相关参数:
@router.post("/web")
async def upload_url(
request: Request,
background_tasks: BackgroundTasks,
url: Union[str, List[str]] = Body(...),
chunk_size: int = Body(default=512),
chunk_overlap: int = Body(default=128),
recursive: bool = Body(default=False),
options: Dict = Body(default={}),
stray = Depends(session),
):
# 实现代码...
核心功能实现
在RabbitHole模块中,我们利用LangChain的RecursiveUrlLoader来实现递归爬取功能:
def ingest_file(
self,
stray,
file: Union[str, UploadFile],
chunk_size: int = 512,
chunk_overlap: int = 128,
recursive: bool = False,
options: dict = None
):
if recursive:
loader = RecursiveUrlLoader(
url=file,
max_depth=options.get("max_depth", 2),
exclude_dirs=options.get("exclude_dirs", ""),
timeout=options.get("timeout", 10),
prevent_outside=options.get("prevent_outside", True),
extractor=lambda x: Soup(x, self.__file_handlers).text
)
docs = loader.load()
else:
# 原有单URL处理逻辑
docs = self.file_to_docs(...)
关键参数说明
- max_depth:控制爬取深度,默认为2层
- exclude_dirs:排除特定目录,支持字符串匹配
- timeout:请求超时时间,默认10秒
- prevent_outside:是否阻止爬取外部链接,默认为True
技术演进
值得注意的是,该项目团队后来决定将这一功能迁移到插件系统中实现。这种架构演进带来了以下优势:
- 核心系统保持精简,降低维护成本
- 允许用户根据需要选择是否启用递归爬取功能
- 便于功能扩展和定制化开发
最佳实践建议
- 对于大型网站,建议从较小的max_depth值开始测试
- 合理设置timeout值,避免长时间等待
- 使用exclude_dirs排除不相关的内容区域
- 在生产环境中,应考虑添加速率限制和错误处理机制
总结
递归URL爬取功能为Cheshire Cat AI项目提供了更强大的网页内容获取能力,使得处理复杂网站结构变得更加高效。通过合理的参数配置,用户可以在保证抓取质量的同时控制资源消耗。随着该功能迁移到插件系统,项目架构变得更加灵活,为未来的功能扩展奠定了良好基础。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
260
2.52 K
deepin linux kernel
C
24
6
暂无简介
Dart
553
123
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
595
131
Ascend Extension for PyTorch
Python
94
121
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
52
67
React Native鸿蒙化仓库
JavaScript
218
301
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
600
仓颉编译器源码及 cjdb 调试工具。
C++
116
90
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.77 K