LMDeploy项目中使用logprobs参数的注意事项
2025-06-04 05:58:33作者:柏廷章Berta
背景介绍
在大型语言模型(LLM)的应用开发中,logprobs参数是一个非常有用的功能,它能够返回模型生成每个token时的概率信息。这些信息对于调试模型行为、分析生成质量以及实现更高级的生成控制都非常有帮助。LMDeploy作为一个高效的LLM推理和部署框架,自然也支持这一功能。
问题现象
在使用LMDeploy部署模型时,部分开发者发现即使设置了logprobs=true参数,返回结果中的logprobs字段仍然为null。这种情况通常出现在使用VLLM容器部署模型时,特别是在请求参数配置不完整的情况下。
原因分析
经过技术团队的分析和验证,发现问题的根源在于请求参数配置不完整。仅仅设置logprobs=true是不够的,还需要同时指定top_logprobs参数。这是因为:
logprobs=true只是告诉服务器需要返回概率信息top_logprobs则指定需要返回多少个最可能的token及其概率值
解决方案
正确的请求参数配置应该同时包含以下两个参数:
{
"logprobs": true,
"top_logprobs": 3 // 可以是任意正整数,表示返回前N个最可能的token
}
技术细节
当这两个参数都正确设置后,LMDeploy会返回类似如下的响应:
{
"choices": [{
"delta": {
"content": "Hello"
},
"logprobs": {
"content": [{
"token": "Hello",
"bytes": [72,101,108,108,111],
"logprob": -0.00005777091791969724,
"top_logprobs": [{
"token": "Hi",
"bytes": [72,105],
"logprob": -9.852066040039062
}, {
"token": "ĠHello",
"bytes": [196,160,72,101,108,108,111],
"logprob": -12.198531150817871
}]
}]
}
}]
}
响应中的logprobs字段包含以下信息:
- 实际生成的token及其概率
- 该token的字节表示
- 其他可能的候选token及其概率(数量由top_logprobs决定)
应用场景
正确获取logprobs信息可以支持多种高级应用:
- 模型调试:分析模型为什么选择某些token而非其他
- 不确定性评估:通过概率值判断模型对生成内容的置信度
- 候选方案生成:不仅获取最佳结果,还能获取其他可能的候选
- 自适应生成:根据概率信息动态调整生成策略
注意事项
- 开启logprobs会增加计算和网络开销,生产环境中应谨慎使用
- 不同模型对logprobs的支持程度可能不同,建议先在小规模测试
- 对于量化模型(如AWQ-INT4),概率值可能与原始模型有细微差异
总结
在LMDeploy项目中使用logprobs功能时,开发者需要同时设置logprobs和top_logprobs两个参数才能获得期望的概率信息。这一功能为模型行为分析和高级生成控制提供了有力支持,是LLM应用开发中的重要工具。正确理解和使用这一功能,可以帮助开发者更好地掌握模型行为,构建更智能的AI应用。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210