LMDeploy项目中使用logprobs参数的注意事项
2025-06-04 16:17:00作者:柏廷章Berta
背景介绍
在大型语言模型(LLM)的应用开发中,logprobs参数是一个非常有用的功能,它能够返回模型生成每个token时的概率信息。这些信息对于调试模型行为、分析生成质量以及实现更高级的生成控制都非常有帮助。LMDeploy作为一个高效的LLM推理和部署框架,自然也支持这一功能。
问题现象
在使用LMDeploy部署模型时,部分开发者发现即使设置了logprobs=true参数,返回结果中的logprobs字段仍然为null。这种情况通常出现在使用VLLM容器部署模型时,特别是在请求参数配置不完整的情况下。
原因分析
经过技术团队的分析和验证,发现问题的根源在于请求参数配置不完整。仅仅设置logprobs=true是不够的,还需要同时指定top_logprobs参数。这是因为:
logprobs=true只是告诉服务器需要返回概率信息top_logprobs则指定需要返回多少个最可能的token及其概率值
解决方案
正确的请求参数配置应该同时包含以下两个参数:
{
"logprobs": true,
"top_logprobs": 3 // 可以是任意正整数,表示返回前N个最可能的token
}
技术细节
当这两个参数都正确设置后,LMDeploy会返回类似如下的响应:
{
"choices": [{
"delta": {
"content": "Hello"
},
"logprobs": {
"content": [{
"token": "Hello",
"bytes": [72,101,108,108,111],
"logprob": -0.00005777091791969724,
"top_logprobs": [{
"token": "Hi",
"bytes": [72,105],
"logprob": -9.852066040039062
}, {
"token": "ĠHello",
"bytes": [196,160,72,101,108,108,111],
"logprob": -12.198531150817871
}]
}]
}
}]
}
响应中的logprobs字段包含以下信息:
- 实际生成的token及其概率
- 该token的字节表示
- 其他可能的候选token及其概率(数量由top_logprobs决定)
应用场景
正确获取logprobs信息可以支持多种高级应用:
- 模型调试:分析模型为什么选择某些token而非其他
- 不确定性评估:通过概率值判断模型对生成内容的置信度
- 候选方案生成:不仅获取最佳结果,还能获取其他可能的候选
- 自适应生成:根据概率信息动态调整生成策略
注意事项
- 开启logprobs会增加计算和网络开销,生产环境中应谨慎使用
- 不同模型对logprobs的支持程度可能不同,建议先在小规模测试
- 对于量化模型(如AWQ-INT4),概率值可能与原始模型有细微差异
总结
在LMDeploy项目中使用logprobs功能时,开发者需要同时设置logprobs和top_logprobs两个参数才能获得期望的概率信息。这一功能为模型行为分析和高级生成控制提供了有力支持,是LLM应用开发中的重要工具。正确理解和使用这一功能,可以帮助开发者更好地掌握模型行为,构建更智能的AI应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1