Liger-Kernel项目中logits_to_keep参数在训练模式下的行为分析
2025-06-10 16:10:35作者:傅爽业Veleda
在深度学习模型训练过程中,对输出logits的处理是一个关键环节。Liger-Kernel项目作为LinkedIn开源的Transformer内核实现,在处理logits_to_keep参数时与HuggingFace Transformers存在行为差异,这一问题值得深入探讨。
问题背景
logits_to_keep参数通常用于指定需要保留的logits索引,这在模型推理阶段特别有用,可以限制模型只输出特定类别的预测结果。然而,在训练阶段,这一参数的行为需要更加谨慎处理。
当前实现差异
Liger-Kernel项目中的大多数模型(如Gemma)仅在推理模式下对logits进行修剪:
if not self.training:
logits = logits[..., :self.config.logits_to_keep]
而HuggingFace Transformers的实现则会在训练和推理模式下都应用logits_to_keep参数。这种差异可能导致模型在训练和推理阶段表现不一致,影响模型性能。
技术影响分析
-
训练-推理不一致性:当仅在推理阶段应用logits_to_keep时,模型在训练阶段会看到完整的logits分布,而在推理阶段却只能看到部分logits,这种不一致可能导致性能下降。
-
梯度传播问题:在训练阶段修剪logits会影响梯度传播路径,可能改变模型的学习动态。
-
内存效率:在训练阶段提前修剪隐藏状态而非logits可以节省内存,因为隐藏状态的维度通常比logits小得多。
解决方案建议
Gemma3模型的实现提供了更好的实践方式,它在输入阶段就对隐藏状态进行修剪:
if self.config.logits_to_keep is not None:
hidden_states = hidden_states[..., :self.config.logits_to_keep]
这种处理方式具有以下优势:
- 保持训练和推理行为一致
- 减少不必要的计算量
- 更早地降低内存占用
最佳实践
对于Transformer类模型的实现,建议:
- 统一训练和推理阶段的行为
- 尽可能在早期阶段进行维度修剪
- 明确文档记录参数的行为
- 提供配置选项让用户选择处理方式
这种设计哲学不仅适用于logits_to_keep参数,也适用于其他可能影响模型行为的参数,有助于提高代码的可维护性和模型的可复现性。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443