Liger-Kernel项目中logits_to_keep参数在训练模式下的行为分析
2025-06-10 15:33:40作者:傅爽业Veleda
在深度学习模型训练过程中,对输出logits的处理是一个关键环节。Liger-Kernel项目作为LinkedIn开源的Transformer内核实现,在处理logits_to_keep参数时与HuggingFace Transformers存在行为差异,这一问题值得深入探讨。
问题背景
logits_to_keep参数通常用于指定需要保留的logits索引,这在模型推理阶段特别有用,可以限制模型只输出特定类别的预测结果。然而,在训练阶段,这一参数的行为需要更加谨慎处理。
当前实现差异
Liger-Kernel项目中的大多数模型(如Gemma)仅在推理模式下对logits进行修剪:
if not self.training:
logits = logits[..., :self.config.logits_to_keep]
而HuggingFace Transformers的实现则会在训练和推理模式下都应用logits_to_keep参数。这种差异可能导致模型在训练和推理阶段表现不一致,影响模型性能。
技术影响分析
-
训练-推理不一致性:当仅在推理阶段应用logits_to_keep时,模型在训练阶段会看到完整的logits分布,而在推理阶段却只能看到部分logits,这种不一致可能导致性能下降。
-
梯度传播问题:在训练阶段修剪logits会影响梯度传播路径,可能改变模型的学习动态。
-
内存效率:在训练阶段提前修剪隐藏状态而非logits可以节省内存,因为隐藏状态的维度通常比logits小得多。
解决方案建议
Gemma3模型的实现提供了更好的实践方式,它在输入阶段就对隐藏状态进行修剪:
if self.config.logits_to_keep is not None:
hidden_states = hidden_states[..., :self.config.logits_to_keep]
这种处理方式具有以下优势:
- 保持训练和推理行为一致
- 减少不必要的计算量
- 更早地降低内存占用
最佳实践
对于Transformer类模型的实现,建议:
- 统一训练和推理阶段的行为
- 尽可能在早期阶段进行维度修剪
- 明确文档记录参数的行为
- 提供配置选项让用户选择处理方式
这种设计哲学不仅适用于logits_to_keep参数,也适用于其他可能影响模型行为的参数,有助于提高代码的可维护性和模型的可复现性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882