首页
/ AWS Deep Learning Containers发布PyTorch Graviton EC2推理镜像v1.19

AWS Deep Learning Containers发布PyTorch Graviton EC2推理镜像v1.19

2025-07-07 03:27:48作者:伍霜盼Ellen

AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组预构建的Docker镜像,这些镜像经过优化,包含了流行的深度学习框架及其依赖项,能够帮助开发者快速部署深度学习工作负载。这些容器镜像针对AWS基础设施进行了性能优化,支持多种计算实例类型,包括基于Arm架构的Graviton处理器。

本次发布的v1.19版本主要针对PyTorch框架在Graviton EC2实例上的推理场景进行了优化,提供了基于Ubuntu 22.04操作系统的容器镜像。该镜像预装了PyTorch 2.4.0及其相关组件,包括torchaudio 2.4.0和torchvision 0.19.0,全部针对CPU进行了优化。

镜像的核心技术栈采用了Python 3.11作为运行时环境,包含了深度学习开发中常用的工具链和库,如NumPy 1.26.4用于数值计算、OpenCV 4.10.0.84用于计算机视觉任务、SciPy 1.14.1用于科学计算等。此外,还预装了AWS CLI工具和boto3 SDK,方便用户与AWS服务进行交互。

值得注意的是,该镜像特别针对Graviton处理器的Arm64架构进行了优化,包含了必要的系统库如libgcc和libstdc++的特定版本。这种优化可以充分发挥Graviton处理器的性能优势,为PyTorch推理工作负载提供更好的性价比。

对于模型服务场景,镜像中还包含了torchserve 0.12.0和torch-model-archiver工具,开发者可以直接使用这些工具来部署和管理PyTorch模型。同时,镜像也预装了常用的开发工具如emacs,方便用户在容器内进行代码编辑和调试。

这个版本的发布体现了AWS在Arm架构上持续投入的决心,为开发者提供了更多选择。使用基于Graviton处理器的EC2实例配合这些优化过的容器镜像,可以在保持性能的同时显著降低推理成本,特别适合大规模部署场景。

登录后查看全文
热门项目推荐
相关项目推荐