Neural Graph Mapping 项目使用教程
1. 项目介绍
Neural Graph Mapping 是一个用于密集SLAM(Simultaneous Localization and Mapping)的神经映射框架。该项目通过将轻量级神经场锚定到稀疏视觉SLAM系统的姿态图上,实现了高效的回环闭合。该方法能够在集成大规模回环闭合的同时,限制必要的重新集成。此外,项目还通过考虑优化过程中的多个回环闭合,展示了在建筑物尺度上的成功映射。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了 pixi
。然后运行以下命令来安装项目包、下载数据并运行示例场景:
pixi run nrgbd_br --rerun_vis True
2.2 运行所有场景和数据集
要运行所有场景和数据集,可以使用以下命令:
pixi run all
你还可以通过设置 NGM_EXTRA_ARGS
来添加额外的参数。例如,要启用可视化并保存结果,可以运行:
NGM_EXTRA_ARGS="--rerun_vis True --rerun_save True" pixi run all
2.3 手动安装
首先,确保你已经安装了 torch==2.2.*
及其对应的 CUDA 版本。然后克隆项目并运行以下命令来安装项目及其所有依赖:
pip install --no-build-isolation -e .
3. 应用案例和最佳实践
3.1 建筑物尺度映射
Neural Graph Mapping 在建筑物尺度上的映射表现出色,能够处理多个回环闭合,并在优化过程中考虑这些闭合。这使得它在大型场景中具有很高的实用价值。
3.2 高效回环闭合
项目通过将神经场锚定到姿态图上,实现了高效的回环闭合。这种方法不仅提高了系统的可扩展性,还减少了重新集成的需求,从而提高了整体性能。
4. 典型生态项目
4.1 Sparse Visual SLAM
Sparse Visual SLAM 是 Neural Graph Mapping 的基础系统,它提供了姿态图和基本的视觉SLAM功能。
4.2 Neural Fields
Neural Fields 是项目中用于表示场景的关键技术,它通过神经网络来表示场景的几何和外观信息。
4.3 Loop Closure Detection
回环闭合检测是 SLAM 系统中的关键组件,Neural Graph Mapping 通过高效的神经映射方法改进了这一过程。
通过以上步骤,你可以快速上手 Neural Graph Mapping 项目,并在实际应用中体验其强大的功能。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04