Neural Graph Mapping 项目使用教程
1. 项目介绍
Neural Graph Mapping 是一个用于密集SLAM(Simultaneous Localization and Mapping)的神经映射框架。该项目通过将轻量级神经场锚定到稀疏视觉SLAM系统的姿态图上,实现了高效的回环闭合。该方法能够在集成大规模回环闭合的同时,限制必要的重新集成。此外,项目还通过考虑优化过程中的多个回环闭合,展示了在建筑物尺度上的成功映射。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了 pixi。然后运行以下命令来安装项目包、下载数据并运行示例场景:
pixi run nrgbd_br --rerun_vis True
2.2 运行所有场景和数据集
要运行所有场景和数据集,可以使用以下命令:
pixi run all
你还可以通过设置 NGM_EXTRA_ARGS 来添加额外的参数。例如,要启用可视化并保存结果,可以运行:
NGM_EXTRA_ARGS="--rerun_vis True --rerun_save True" pixi run all
2.3 手动安装
首先,确保你已经安装了 torch==2.2.* 及其对应的 CUDA 版本。然后克隆项目并运行以下命令来安装项目及其所有依赖:
pip install --no-build-isolation -e .
3. 应用案例和最佳实践
3.1 建筑物尺度映射
Neural Graph Mapping 在建筑物尺度上的映射表现出色,能够处理多个回环闭合,并在优化过程中考虑这些闭合。这使得它在大型场景中具有很高的实用价值。
3.2 高效回环闭合
项目通过将神经场锚定到姿态图上,实现了高效的回环闭合。这种方法不仅提高了系统的可扩展性,还减少了重新集成的需求,从而提高了整体性能。
4. 典型生态项目
4.1 Sparse Visual SLAM
Sparse Visual SLAM 是 Neural Graph Mapping 的基础系统,它提供了姿态图和基本的视觉SLAM功能。
4.2 Neural Fields
Neural Fields 是项目中用于表示场景的关键技术,它通过神经网络来表示场景的几何和外观信息。
4.3 Loop Closure Detection
回环闭合检测是 SLAM 系统中的关键组件,Neural Graph Mapping 通过高效的神经映射方法改进了这一过程。
通过以上步骤,你可以快速上手 Neural Graph Mapping 项目,并在实际应用中体验其强大的功能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00