首页
/ Neural Graph Mapping 项目使用教程

Neural Graph Mapping 项目使用教程

2024-09-12 17:07:55作者:申梦珏Efrain

1. 项目介绍

Neural Graph Mapping 是一个用于密集SLAM(Simultaneous Localization and Mapping)的神经映射框架。该项目通过将轻量级神经场锚定到稀疏视觉SLAM系统的姿态图上,实现了高效的回环闭合。该方法能够在集成大规模回环闭合的同时,限制必要的重新集成。此外,项目还通过考虑优化过程中的多个回环闭合,展示了在建筑物尺度上的成功映射。

2. 项目快速启动

2.1 安装依赖

首先,确保你已经安装了 pixi。然后运行以下命令来安装项目包、下载数据并运行示例场景:

pixi run nrgbd_br --rerun_vis True

2.2 运行所有场景和数据集

要运行所有场景和数据集,可以使用以下命令:

pixi run all

你还可以通过设置 NGM_EXTRA_ARGS 来添加额外的参数。例如,要启用可视化并保存结果,可以运行:

NGM_EXTRA_ARGS="--rerun_vis True --rerun_save True" pixi run all

2.3 手动安装

首先,确保你已经安装了 torch==2.2.* 及其对应的 CUDA 版本。然后克隆项目并运行以下命令来安装项目及其所有依赖:

pip install --no-build-isolation -e .

3. 应用案例和最佳实践

3.1 建筑物尺度映射

Neural Graph Mapping 在建筑物尺度上的映射表现出色,能够处理多个回环闭合,并在优化过程中考虑这些闭合。这使得它在大型场景中具有很高的实用价值。

3.2 高效回环闭合

项目通过将神经场锚定到姿态图上,实现了高效的回环闭合。这种方法不仅提高了系统的可扩展性,还减少了重新集成的需求,从而提高了整体性能。

4. 典型生态项目

4.1 Sparse Visual SLAM

Sparse Visual SLAM 是 Neural Graph Mapping 的基础系统,它提供了姿态图和基本的视觉SLAM功能。

4.2 Neural Fields

Neural Fields 是项目中用于表示场景的关键技术,它通过神经网络来表示场景的几何和外观信息。

4.3 Loop Closure Detection

回环闭合检测是 SLAM 系统中的关键组件,Neural Graph Mapping 通过高效的神经映射方法改进了这一过程。

通过以上步骤,你可以快速上手 Neural Graph Mapping 项目,并在实际应用中体验其强大的功能。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
0