AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
2025-07-06 14:56:51作者:邓越浪Henry
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像经过优化,包含了流行的深度学习框架及其依赖项,能够帮助开发者快速部署深度学习应用。近日,该项目发布了基于PyTorch 2.5.1的推理专用容器镜像,支持Python 3.11环境,为机器学习推理任务提供了新的选择。
镜像版本概览
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU版本:基于Ubuntu 22.04系统,预装了PyTorch 2.5.1的CPU版本,适用于不需要GPU加速的推理场景。该镜像包含了torchvision 0.20.1和torchaudio 2.5.1等配套库,能够满足常见的计算机视觉和音频处理任务需求。
-
GPU版本:同样基于Ubuntu 22.04系统,但预装了支持CUDA 12.4的PyTorch 2.5.1 GPU版本。这个版本特别针对NVIDIA GPU进行了优化,包含了cuDNN等必要的GPU加速库,适合需要高性能推理的应用场景。
关键技术组件
这两个镜像都预装了丰富的Python包和系统依赖:
- 核心框架:PyTorch 2.5.1作为核心深度学习框架,提供了强大的张量计算和自动微分功能。
- 配套工具:torchvision 0.20.1(计算机视觉)、torchaudio 2.5.1(音频处理)等配套库,扩展了PyTorch的应用范围。
- 模型服务:包含了torchserve 0.12.0和torch-model-archiver 0.12.0,方便用户部署和管理PyTorch模型。
- 数据处理:预装了pandas 2.2.3、numpy 2.1.3、scikit-learn 1.5.2等数据处理和分析库。
- 图像处理:opencv-python 4.10.0.84和Pillow 11.0.0提供了强大的图像处理能力。
- 开发工具:包含了AWS CLI工具(awscli 1.35.22)和boto3 1.35.56,方便与AWS服务交互。
系统环境与优化
两个镜像都基于Ubuntu 22.04 LTS系统构建,确保了系统的稳定性和长期支持。在系统层面:
- 包含了GCC 11和libstdc++6等基础编译工具和运行库
- 预装了常用的开发工具如emacs
- 针对GPU版本,特别集成了CUDA 12.4工具包和cuDNN库,充分发挥NVIDIA GPU的计算能力
应用场景
这些预构建的PyTorch推理镜像特别适合以下场景:
- 模型部署:快速部署训练好的PyTorch模型到生产环境
- 推理服务:构建高性能的机器学习推理服务
- 原型开发:快速搭建PyTorch开发环境,验证模型效果
- 云端AI服务:在AWS云平台上构建AI服务
总结
AWS Deep Learning Containers提供的这些PyTorch推理镜像,通过预集成和优化,大大简化了PyTorch模型的部署流程。开发者可以直接使用这些镜像,而不必花费时间在环境配置和依赖管理上,能够更专注于模型开发和业务逻辑实现。特别是对于需要在AWS云平台上部署PyTorch应用的用户,这些镜像提供了开箱即用的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
301
2.65 K
Ascend Extension for PyTorch
Python
130
152
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
457
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
610
196
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
613
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.43 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205