首页
/ AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像

AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像

2025-07-06 10:10:44作者:邓越浪Henry

AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像经过优化,包含了流行的深度学习框架及其依赖项,能够帮助开发者快速部署深度学习应用。近日,该项目发布了基于PyTorch 2.5.1的推理专用容器镜像,支持Python 3.11环境,为机器学习推理任务提供了新的选择。

镜像版本概览

本次发布的PyTorch推理镜像包含两个主要版本:

  1. CPU版本:基于Ubuntu 22.04系统,预装了PyTorch 2.5.1的CPU版本,适用于不需要GPU加速的推理场景。该镜像包含了torchvision 0.20.1和torchaudio 2.5.1等配套库,能够满足常见的计算机视觉和音频处理任务需求。

  2. GPU版本:同样基于Ubuntu 22.04系统,但预装了支持CUDA 12.4的PyTorch 2.5.1 GPU版本。这个版本特别针对NVIDIA GPU进行了优化,包含了cuDNN等必要的GPU加速库,适合需要高性能推理的应用场景。

关键技术组件

这两个镜像都预装了丰富的Python包和系统依赖:

  • 核心框架:PyTorch 2.5.1作为核心深度学习框架,提供了强大的张量计算和自动微分功能。
  • 配套工具:torchvision 0.20.1(计算机视觉)、torchaudio 2.5.1(音频处理)等配套库,扩展了PyTorch的应用范围。
  • 模型服务:包含了torchserve 0.12.0和torch-model-archiver 0.12.0,方便用户部署和管理PyTorch模型。
  • 数据处理:预装了pandas 2.2.3、numpy 2.1.3、scikit-learn 1.5.2等数据处理和分析库。
  • 图像处理:opencv-python 4.10.0.84和Pillow 11.0.0提供了强大的图像处理能力。
  • 开发工具:包含了AWS CLI工具(awscli 1.35.22)和boto3 1.35.56,方便与AWS服务交互。

系统环境与优化

两个镜像都基于Ubuntu 22.04 LTS系统构建,确保了系统的稳定性和长期支持。在系统层面:

  • 包含了GCC 11和libstdc++6等基础编译工具和运行库
  • 预装了常用的开发工具如emacs
  • 针对GPU版本,特别集成了CUDA 12.4工具包和cuDNN库,充分发挥NVIDIA GPU的计算能力

应用场景

这些预构建的PyTorch推理镜像特别适合以下场景:

  1. 模型部署:快速部署训练好的PyTorch模型到生产环境
  2. 推理服务:构建高性能的机器学习推理服务
  3. 原型开发:快速搭建PyTorch开发环境,验证模型效果
  4. 云端AI服务:在AWS云平台上构建AI服务

总结

AWS Deep Learning Containers提供的这些PyTorch推理镜像,通过预集成和优化,大大简化了PyTorch模型的部署流程。开发者可以直接使用这些镜像,而不必花费时间在环境配置和依赖管理上,能够更专注于模型开发和业务逻辑实现。特别是对于需要在AWS云平台上部署PyTorch应用的用户,这些镜像提供了开箱即用的解决方案。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511