AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像经过优化,可直接在AWS云平台上运行。它们包含了流行的深度学习框架及其依赖项,帮助开发者快速部署深度学习应用,而无需花费时间配置环境。
近日,AWS Deep Learning Containers项目发布了针对PyTorch 2.5.1框架的推理专用容器镜像更新。这些新镜像基于Ubuntu 22.04操作系统,支持Python 3.11环境,为机器学习推理任务提供了开箱即用的解决方案。
镜像版本与技术规格
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU版本:适用于不需要GPU加速的推理场景
- 基础镜像:Ubuntu 22.04
- Python版本:3.11
- PyTorch版本:2.5.1(CPU优化版)
- 包含TorchServe 0.12.0模型服务工具
-
GPU版本:针对CUDA 12.4环境优化
- 基础镜像:Ubuntu 22.04
- Python版本:3.11
- PyTorch版本:2.5.1(CUDA 12.4优化版)
- 包含完整的CUDA工具链和cuDNN库
- 同样包含TorchServe 0.12.0
关键软件包与依赖项
这些镜像预装了深度学习开发所需的核心软件包:
- 数据处理与科学计算:NumPy 2.1.3、Pandas 2.2.3、SciPy 1.14.1
- 计算机视觉:OpenCV 4.10.0、Pillow 11.0.0
- 机器学习工具:scikit-learn 1.5.2
- AWS集成:boto3 1.35.56、awscli 1.35.22
- 构建工具:Cython 3.0.11、ninja 1.11.1
GPU版本额外包含了MPI支持(mpi4py 4.0.1)和完整的CUDA 12.4工具链,包括cuBLAS和cuDNN库。
技术优势与应用场景
这些预构建镜像的主要优势在于:
-
开箱即用:开发者无需花费时间配置复杂的深度学习环境,可以直接使用这些镜像部署推理服务。
-
性能优化:镜像针对AWS基础设施进行了优化,特别是GPU版本充分利用了CUDA 12.4的最新特性。
-
版本一致性:确保开发、测试和生产环境使用完全相同的软件版本,避免"在我机器上能运行"的问题。
-
模型服务支持:内置TorchServe工具,简化了PyTorch模型的部署和服务化过程。
典型应用场景包括:
- 实时推理服务部署
- 批量预测任务
- 模型服务API开发
- 机器学习推理基准测试
总结
AWS Deep Learning Containers的这次更新为PyTorch用户带来了最新的2.5.1框架支持,同时保持了与Python 3.11和Ubuntu 22.04的兼容性。这些镜像特别适合需要在AWS云平台上快速部署PyTorch推理服务的团队,可以显著减少环境配置时间,让开发者更专注于模型本身和业务逻辑的开发。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









