AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组预构建的Docker镜像,这些镜像包含了流行的深度学习框架及其依赖项,可以帮助开发者快速部署深度学习应用。这些容器经过优化,能够在AWS云环境中高效运行,支持CPU和GPU加速。
近日,AWS Deep Learning Containers项目发布了PyTorch 2.5.1推理专用镜像,为开发者提供了开箱即用的深度学习推理环境。这些镜像基于Ubuntu 22.04操作系统构建,支持Python 3.11,并针对EC2实例进行了优化。
镜像版本概览
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU版本:
pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-ec2
- 基础镜像:Ubuntu 22.04
- Python版本:3.11
- PyTorch版本:2.5.1(CPU优化版)
- 包含常用计算机视觉库如OpenCV 4.10.0和Pillow 11.0.0
-
GPU版本:
pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-ec2
- 基础镜像:Ubuntu 22.04
- Python版本:3.11
- PyTorch版本:2.5.1(CUDA 12.4优化版)
- 包含CUDA 12.4工具链和cuDNN库
- 额外支持MPI(mpi4py 4.0.1)和Pandas 2.2.3
关键技术组件
这些镜像预装了深度学习开发所需的核心组件:
- PyTorch生态系统:包括torch 2.5.1、torchvision 0.20.1、torchaudio 2.5.1
- 模型服务工具:torchserve 0.12.0和torch-model-archiver 0.12.0
- 科学计算库:NumPy 2.1.3、SciPy 1.14.1
- 图像处理:OpenCV 4.10.0、Pillow 11.0.0
- AWS工具:AWS CLI 1.35.22、boto3 1.35.56
- 构建工具:Cython 3.0.11、ninja 1.11.1.1
使用场景与优势
这些预构建的PyTorch推理镜像特别适合以下场景:
- 快速部署推理服务:开发者可以直接使用这些镜像部署PyTorch模型推理服务,无需花费时间配置环境。
- 一致性保障:确保开发、测试和生产环境的一致性,避免"在我机器上能运行"的问题。
- 性能优化:镜像已经针对AWS EC2实例进行了优化,特别是GPU版本充分利用了CUDA 12.4和cuDNN的加速能力。
- 模型服务:内置的torchserve工具简化了模型部署和服务化的过程。
技术细节
对于GPU版本,镜像包含了完整的CUDA 12.4工具链和cuDNN库,确保能够充分利用NVIDIA GPU的加速能力。同时,镜像还包含了MPI支持,适合需要分布式推理的场景。
CPU版本则更加轻量,适合不需要GPU加速或者成本敏感的应用场景。两个版本都包含了常用的数据处理和科学计算库,如NumPy和SciPy的最新版本。
总结
AWS Deep Learning Containers提供的这些PyTorch推理镜像,为开发者提供了即用型的深度学习环境,大大简化了模型部署的复杂度。无论是需要GPU加速的高性能推理,还是轻量级的CPU推理,都能找到合适的镜像版本。这些镜像经过AWS官方优化和测试,能够确保在EC2环境中的稳定性和性能表现。
对于正在使用PyTorch进行深度学习应用开发的企业和开发者,这些预构建的容器镜像可以显著提高开发效率,缩短从模型开发到生产部署的周期。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









