AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组预构建的Docker镜像,这些镜像包含了流行的深度学习框架及其依赖项,可以帮助开发者快速部署深度学习应用。这些容器经过优化,能够在AWS云环境中高效运行,支持CPU和GPU加速。
近日,AWS Deep Learning Containers项目发布了PyTorch 2.5.1推理专用镜像,为开发者提供了开箱即用的深度学习推理环境。这些镜像基于Ubuntu 22.04操作系统构建,支持Python 3.11,并针对EC2实例进行了优化。
镜像版本概览
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU版本:
pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-ec2- 基础镜像:Ubuntu 22.04
- Python版本:3.11
- PyTorch版本:2.5.1(CPU优化版)
- 包含常用计算机视觉库如OpenCV 4.10.0和Pillow 11.0.0
-
GPU版本:
pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-ec2- 基础镜像:Ubuntu 22.04
- Python版本:3.11
- PyTorch版本:2.5.1(CUDA 12.4优化版)
- 包含CUDA 12.4工具链和cuDNN库
- 额外支持MPI(mpi4py 4.0.1)和Pandas 2.2.3
关键技术组件
这些镜像预装了深度学习开发所需的核心组件:
- PyTorch生态系统:包括torch 2.5.1、torchvision 0.20.1、torchaudio 2.5.1
- 模型服务工具:torchserve 0.12.0和torch-model-archiver 0.12.0
- 科学计算库:NumPy 2.1.3、SciPy 1.14.1
- 图像处理:OpenCV 4.10.0、Pillow 11.0.0
- AWS工具:AWS CLI 1.35.22、boto3 1.35.56
- 构建工具:Cython 3.0.11、ninja 1.11.1.1
使用场景与优势
这些预构建的PyTorch推理镜像特别适合以下场景:
- 快速部署推理服务:开发者可以直接使用这些镜像部署PyTorch模型推理服务,无需花费时间配置环境。
- 一致性保障:确保开发、测试和生产环境的一致性,避免"在我机器上能运行"的问题。
- 性能优化:镜像已经针对AWS EC2实例进行了优化,特别是GPU版本充分利用了CUDA 12.4和cuDNN的加速能力。
- 模型服务:内置的torchserve工具简化了模型部署和服务化的过程。
技术细节
对于GPU版本,镜像包含了完整的CUDA 12.4工具链和cuDNN库,确保能够充分利用NVIDIA GPU的加速能力。同时,镜像还包含了MPI支持,适合需要分布式推理的场景。
CPU版本则更加轻量,适合不需要GPU加速或者成本敏感的应用场景。两个版本都包含了常用的数据处理和科学计算库,如NumPy和SciPy的最新版本。
总结
AWS Deep Learning Containers提供的这些PyTorch推理镜像,为开发者提供了即用型的深度学习环境,大大简化了模型部署的复杂度。无论是需要GPU加速的高性能推理,还是轻量级的CPU推理,都能找到合适的镜像版本。这些镜像经过AWS官方优化和测试,能够确保在EC2环境中的稳定性和性能表现。
对于正在使用PyTorch进行深度学习应用开发的企业和开发者,这些预构建的容器镜像可以显著提高开发效率,缩短从模型开发到生产部署的周期。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00