AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组预构建的Docker镜像,这些镜像包含了流行的深度学习框架及其依赖项,可以帮助开发者快速部署深度学习应用。这些容器经过优化,能够在AWS云环境中高效运行,支持CPU和GPU加速。
近日,AWS Deep Learning Containers项目发布了PyTorch 2.5.1推理专用镜像,为开发者提供了开箱即用的深度学习推理环境。这些镜像基于Ubuntu 22.04操作系统构建,支持Python 3.11,并针对EC2实例进行了优化。
镜像版本概览
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU版本:
pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-ec2- 基础镜像:Ubuntu 22.04
- Python版本:3.11
- PyTorch版本:2.5.1(CPU优化版)
- 包含常用计算机视觉库如OpenCV 4.10.0和Pillow 11.0.0
-
GPU版本:
pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-ec2- 基础镜像:Ubuntu 22.04
- Python版本:3.11
- PyTorch版本:2.5.1(CUDA 12.4优化版)
- 包含CUDA 12.4工具链和cuDNN库
- 额外支持MPI(mpi4py 4.0.1)和Pandas 2.2.3
关键技术组件
这些镜像预装了深度学习开发所需的核心组件:
- PyTorch生态系统:包括torch 2.5.1、torchvision 0.20.1、torchaudio 2.5.1
- 模型服务工具:torchserve 0.12.0和torch-model-archiver 0.12.0
- 科学计算库:NumPy 2.1.3、SciPy 1.14.1
- 图像处理:OpenCV 4.10.0、Pillow 11.0.0
- AWS工具:AWS CLI 1.35.22、boto3 1.35.56
- 构建工具:Cython 3.0.11、ninja 1.11.1.1
使用场景与优势
这些预构建的PyTorch推理镜像特别适合以下场景:
- 快速部署推理服务:开发者可以直接使用这些镜像部署PyTorch模型推理服务,无需花费时间配置环境。
- 一致性保障:确保开发、测试和生产环境的一致性,避免"在我机器上能运行"的问题。
- 性能优化:镜像已经针对AWS EC2实例进行了优化,特别是GPU版本充分利用了CUDA 12.4和cuDNN的加速能力。
- 模型服务:内置的torchserve工具简化了模型部署和服务化的过程。
技术细节
对于GPU版本,镜像包含了完整的CUDA 12.4工具链和cuDNN库,确保能够充分利用NVIDIA GPU的加速能力。同时,镜像还包含了MPI支持,适合需要分布式推理的场景。
CPU版本则更加轻量,适合不需要GPU加速或者成本敏感的应用场景。两个版本都包含了常用的数据处理和科学计算库,如NumPy和SciPy的最新版本。
总结
AWS Deep Learning Containers提供的这些PyTorch推理镜像,为开发者提供了即用型的深度学习环境,大大简化了模型部署的复杂度。无论是需要GPU加速的高性能推理,还是轻量级的CPU推理,都能找到合适的镜像版本。这些镜像经过AWS官方优化和测试,能够确保在EC2环境中的稳定性和性能表现。
对于正在使用PyTorch进行深度学习应用开发的企业和开发者,这些预构建的容器镜像可以显著提高开发效率,缩短从模型开发到生产部署的周期。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00