VMware Tanzu Labs Educates 培训平台快速入门指南
平台概述
VMware Tanzu Labs Educates 培训平台是一个基于 Kubernetes 的交互式学习环境,专为技术培训和教育场景设计。它允许培训师快速创建和部署交互式技术工作坊,学员可以直接在浏览器中获得实践操作体验。
环境准备
系统要求
在本地机器上部署 Educates 需要满足以下条件:
-
操作系统:支持 macOS 或 Linux。Windows 用户需要使用 WSL (Windows Subsystem for Linux) 环境。
-
Docker 环境:需要安装并配置好 Docker 环境。推荐使用 Docker Desktop,但在 macOS 上也可以使用 Colima 作为替代方案。
-
资源分配:确保为 Docker 环境分配了足够的内存和磁盘资源,以支持 Kubernetes 集群运行。
-
端口可用性:
- 端口 80 (HTTP) 和 443 (HTTPS) 必须可用
- 端口 53 (DNS) 在 macOS 上需要可用(如果启用本地 DNS 解析)
- 端口 5001 需要可用(用于本地镜像仓库)
Docker 配置
如果使用 Docker Desktop,需要确保:
- 启用了默认 Docker socket(设置->高级)
- 允许特权端口映射(设置->高级)
- 根据版本可能需要调整 UDP 内核网络设置(设置->资源->网络)
对于 Colima 用户,需要在 Educates 配置文件中添加以下内容:
localKindCluster:
listenAddress: 0.0.0.0
CLI 工具安装
Educates 提供了命令行工具来简化平台管理。安装步骤如下:
-
下载适合您操作系统和架构的 CLI 二进制文件:
- Linux (amd64):educates-linux-amd64
- Linux (arm64):educates-linux-arm64
- macOS (amd64):educates-darwin-amd64
- macOS (arm64):educates-darwin-arm64
-
重命名为
educates,添加可执行权限:chmod +x educates -
将文件移动到系统 PATH 包含的目录中。
对于 macOS ARM64 用户,虽然可以使用 amd64 二进制(通过 Rosetta 运行),但建议使用原生 ARM64 版本以获得更好的兼容性。
创建本地 Kubernetes 集群
执行以下命令创建本地开发环境:
educates create-cluster
该命令会完成以下工作:
- 使用 Kind 创建 Kubernetes 集群
- 启用集群安全策略引擎
- 安装 Contour 作为入口控制器
- 部署本地镜像仓库(端口 5001)
- 配置集群信任本地仓库
- 部署 Educates 平台
整个过程可能需要 5 分钟左右,具体取决于网络速度。完成后,集群上下文会自动配置为 kind-educates。
域名配置说明
Educates 需要一个有效的完全限定域名(FQDN)用于 Kubernetes Ingress。默认情况下,CLI 会使用 nip.io 域名(基于本地 IP 地址,如 192-168-1-1.nip.io)。
注意:
- 某些家庭路由器可能阻止
nip.io域名(DNS 重绑定保护) - 高级功能需要通配符 TLS 证书,而
nip.io域名无法获得合法证书 - 生产环境建议配置自定义域名
部署示例工作坊
Educates 平台的核心功能是运行交互式工作坊。让我们部署一个 Kubernetes 基础教程:
educates deploy-workshop -f https://github.com/educates/lab-k8s-fundamentals/releases/latest/download/workshop.yaml
此命令会:
- 加载工作坊定义到集群
- 自动部署培训门户(如果尚未运行)
- 为该工作坊创建专用环境
访问工作坊
要访问已部署的工作坊,执行:
educates browse-workshops
此命令会自动打开浏览器并登录培训门户。如需手动访问或分享链接,可以使用:
educates list-portals
查看门户密码:
educates view-credentials
首次运行工作坊时可能需要较长时间,因为需要下载相关容器镜像。
管理工作坊
查看已部署的工作坊:
educates list-workshops
删除工作坊(使用原始 YAML 文件或工作坊名称):
educates delete-workshop -f [YAML_URL]
# 或
educates delete-workshop -n [WORKSHOP_NAME]
开发工作流程建议
Educates 本地环境特别适合工作坊内容开发,因为它提供了:
- 本地镜像仓库,用于存储自定义基础镜像和工作坊内容
- 快速迭代的工作流程,无需发布到外部平台
- 完整的 Kubernetes 环境,模拟生产场景
后续步骤
本快速入门指南介绍了基本使用方法。要深入了解平台功能,建议探索:
- 自定义工作坊内容开发
- 高级部署配置(生产环境)
- 多工作坊管理
- 学员进度跟踪和评估功能
Educates 平台为技术培训提供了强大的基础设施,无论是内部员工培训还是对外技术教育,都能提供高效的交互式学习体验。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00