VMware Tanzu Educates 培训平台迁移指南:从 Learning Center 到 Educates 2.X
平台演进背景
VMware Tanzu Educates 培训平台是一个基于 Kubernetes 的交互式学习环境解决方案。在技术演进过程中,平台经历了从 Educates 1.X 分支到 Learning Center,再到当前 Educates 2.X 版本的发展路径。本文将详细介绍从 Learning Center 迁移到 Educates 2.X 版本时需要注意的关键变更点。
核心架构变更
1. API 组与资源定义变更
最显著的架构变化体现在 Kubernetes 自定义资源的 API 组定义上:
Learning Center 定义方式:
apiVersion: learningcenter.tanzu.vmware.com/v1beta1
kind: Workshop
Educates 2.X 新规范:
apiVersion: training.educates.dev/v1beta1
kind: Workshop
对应的资源类别别名也从 learningcenter/learningcenter-training 变更为 educates/educates-training。查询资源时需要使用新命令:
kubectl get educates
2. 工作坊基础镜像配置
镜像配置位置发生了重要调整:
旧版配置:
spec:
content:
image: registry.example.com/org/image:tag
新版规范:
spec:
workshop:
image: registry.example.com/org/image:tag
Educates 提供了更丰富的预置基础镜像选择:
base-environment:*- 基础环境镜像jdk{8,11,17,21}-environment:*- 各版本JDK环境conda-environment:*- Conda数据科学环境
注意:原有 Learning Center 的定制镜像需要基于 Educates 的基础镜像重新构建。
内容分发机制升级
3. 工作坊内容获取方式
内容获取机制从简单配置升级为基于 vendir 的声明式配置:
GitHub 内容源新配置:
spec:
workshop:
files:
- git:
url: https://github.com/org/repo
ref: origin/main
includePaths:
- /workshop/**
- /exercises/**
HTTP 归档文件新配置:
spec:
workshop:
files:
- http:
url: https://example.com/workshop.tgz
OCI 镜像新配置:
spec:
workshop:
files:
- image:
url: $(image_repository)/workshop-files:latest
新机制提供了更精细的内容过滤控制,通过 includePaths 和 excludePaths 替代原有的 .eduk8signore 文件。
安全策略改进
4. 安全策略命名规范
安全策略名称遵循了 Kubernetes 最新的 Pod 安全标准:
| Learning Center | Educates 2.X |
|---|---|
| nonroot | restricted |
| anyuid | baseline |
| custom | privileged |
配置位置变更:
spec:
session:
namespaces:
security:
policy: baseline
5. 资源配额调整
内存限制范围进行了优化调整:
新版默认值:
| Budget | Min | Max | Request | Limit |
|-----------|------|------|---------|-------|
| small | 1M | 1Gi | 128Mi | 256Mi |
| medium | 1M | 2Gi | 128Mi | 512Mi |
...
主要变化是将最小内存从 32Mi 调整为 1M,并统一了大型工作坊的内存限制为 512Mi。
网络与入口变更
6. Ingress 主机名规则
入口主机名生成规则从后缀式改为前缀式:
旧规则:
$(session_namespace)-app.$(ingress_domain)
新规范:
app-$(session_name).$(ingress_domain)
同时强化了安全策略,要求所有入口必须包含会话名称,防止跨工作坊干扰。
开发体验优化
7. 编辑器扩展管理
Educates 2.X 不再预装任何 VS Code 扩展,改为按需安装。可以通过工作坊的 setup.d 脚本安装:
#!/bin/bash
code-server --install-extension redhat.java@1.3.0
code-server --install-extension vscjava.vscode-java-debug@0.38.0
注意:编辑器路径已标准化为
/opt/editor/bin/code-server
8. 内容渲染引擎
逐步淘汰原有的"经典"渲染器,转向基于 Hugo 的现代渲染系统。建议新工作坊采用 Hugo 格式编写教学内容。
配置管理变更
9. 门户默认设置
门户默认值配置位置调整:
新版规范:
spec:
portal:
workshop:
defaults:
capacity: 6
reserved: 2
initial: 4
10. 环境变量管理
推荐使用 setup.d 脚本配合 .env 文件替代原有的 profile.d 机制:
#!/bin/bash
echo "MY_VAR=value" >> $WORKSHOP_ENV
迁移实施建议
- 分阶段迁移:先测试关键工作坊,再逐步推广
- 镜像重建:所有定制镜像需基于 Educates 基础镜像重建
- 安全评审:检查安全策略是否符合新规范
- 性能测试:验证资源配额是否满足需求
- 用户培训:介绍新特性的使用方式
通过系统性地应用这些变更,您可以顺利将工作坊从 Learning Center 迁移到功能更强大、安全性更高的 Educates 2.X 平台。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0113
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00