Super-Gradients项目中YOLO NAS预测结果处理的正确方法
2025-06-11 01:44:03作者:晏闻田Solitary
在使用Super-Gradients项目中的YOLO NAS模型进行目标检测时,开发者经常会遇到如何处理预测结果的问题。本文将详细介绍YOLO NAS模型的预测输出结构以及正确的处理方法。
YOLO NAS预测输出结构
YOLO NAS模型的predict方法返回的是一个ImageDetectionPrediction对象,而不是一个可迭代的列表或数组。这是许多开发者容易混淆的地方。该对象包含了丰富的检测信息,需要以特定的方式访问。
常见错误分析
开发者通常会尝试以下两种错误方式处理预测结果:
- 直接将预测结果转换为列表:
result = list(model.predict(image))[0] # 错误!ImageDetectionPrediction不可迭代
- 尝试遍历预测结果:
for pred in predictions: # 错误!单个预测结果不可迭代
# 处理代码
这些操作都会导致TypeError: 'ImageDetectionPrediction' object is not iterable错误。
正确的处理方法
单张图片预测处理
对于单张图片的预测,正确的处理方式如下:
# 获取预测结果
prediction = model.predict(image_path, conf=0.35)
# 访问预测信息
class_names = prediction.class_names # 类别名称列表
labels = prediction.prediction.labels # 预测的类别ID
confidence = prediction.prediction.confidence # 置信度分数
bboxes = prediction.prediction.bboxes_xyxy # 边界框坐标(xyxy格式)
# 遍历每个检测结果
for i, (label, conf, bbox) in enumerate(zip(labels, confidence, bboxes)):
print(f"检测结果 {i}:")
print(f"类别ID: {label}")
print(f"类别名称: {class_names[int(label)]}")
print(f"置信度: {conf:.2f}")
print(f"边界框坐标: {bbox}")
print("-" * 20)
多张图片预测处理
如果需要批量处理多张图片,应该使用列表输入:
image_paths = ["image1.jpg", "image2.jpg", "image3.jpg"]
predictions = model.predict(image_paths, conf=0.35) # 现在predictions是可迭代的
for image_prediction in predictions: # 每个image_prediction是ImageDetectionPrediction对象
# 处理每张图片的预测结果
class_names = image_prediction.class_names
labels = image_prediction.prediction.labels
# 其余处理同上...
关键点总结
-
predict方法对单张图片返回单个ImageDetectionPrediction对象,对图片列表返回可迭代的预测结果集合。 -
ImageDetectionPrediction对象包含以下重要属性:class_names: 所有类别名称的列表prediction: 包含实际预测结果的对象prediction.labels: 预测的类别ID数组prediction.confidence: 置信度分数数组prediction.bboxes_xyxy: 边界框坐标数组(xyxy格式)
-
处理预测结果时,应该先明确是处理单张图片还是多张图片的结果,然后采用对应的访问方式。
通过理解YOLO NAS预测输出的结构和正确的处理方法,开发者可以避免常见的迭代错误,并有效地提取和使用检测结果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178