GLM-4多卡推理中的设备一致性问题分析与解决方案
问题背景
在使用GLM-4视觉语言模型进行多GPU推理时,开发者可能会遇到一个常见的运行时错误:"Expected all tensors to be on the same device, but found at least two devices, cuda:1 and cuda:2!"。这个问题通常发生在使用transformers库加载GLM-4v模型并将device_map设置为多卡("auto")配置时。
问题本质分析
这个错误的根本原因是模型的不同部分被分配到了不同的GPU设备上,而某些运算操作要求所有参与计算的张量必须位于同一设备上。具体到GLM-4v模型,问题出现在视觉模块的前向传播过程中,当模型尝试执行残差连接操作(mlp_input + mlp_output)时,发现输入张量分布在不同的CUDA设备上。
技术细节
在transformers的自动设备映射机制下,大型模型的不同层会被自动分配到不同的GPU上以平衡显存使用。然而,GLM-4v的视觉模块实现中存在一个潜在问题:视觉transformer层的MLP子模块可能被分配到与主模块不同的设备上,导致在执行残差连接时出现设备不匹配。
解决方案
经过分析,修复方案需要修改modeling_chatglm.py文件中的相关代码。具体来说,需要在视觉模块的前向传播过程中确保所有中间张量都位于同一设备上。这可以通过以下方式实现:
- 在视觉模块的forward方法中,显式地将所有中间张量移动到同一设备
- 或者在模型初始化时确保视觉模块的所有子模块都位于同一设备上
实施建议
对于遇到此问题的开发者,建议采取以下步骤:
- 更新到最新版本的GLM-4代码库,该问题已在最新版本中修复
- 如果无法立即更新,可以手动修改modeling_chatglm.py文件,在视觉模块的相关位置添加设备同步逻辑
- 在模型推理前,确保输入数据已经移动到与模型相同的设备上
最佳实践
为了避免类似的多设备同步问题,建议开发者在进行多卡推理时:
- 仔细检查模型各部分的设备分配情况
- 在关键操作前添加设备一致性检查
- 使用统一的设备管理策略
- 对跨设备操作进行显式处理
总结
GLM-4作为先进的视觉语言模型,在多GPU环境下运行时可能会遇到设备同步问题。理解这些问题的本质并掌握正确的解决方法,对于充分发挥模型性能至关重要。通过本文介绍的分析思路和解决方案,开发者可以更顺利地在多卡环境下部署GLM-4模型进行推理任务。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00