GLM-4V多卡推理实现与设备一致性问题的解决方案
2025-06-03 21:42:34作者:史锋燃Gardner
背景介绍
GLM-4V作为新一代多模态大模型,在实际部署时经常需要利用多GPU进行推理加速。然而,开发者在尝试多卡部署时遇到了设备不一致的问题,表现为"Expected all tensors to be on the same device"错误。本文将深入分析问题原因并提供完整的解决方案。
问题现象分析
在多GPU环境下运行GLM-4V时,模型会抛出设备不一致的错误,具体表现为:
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:2 and cuda:3!
这种错误通常发生在视觉模块(visual.py)中的Transformer层前向传播过程中,特别是在残差连接操作时。根本原因是模型的不同部分被分配到了不同的GPU设备上,而PyTorch要求参与运算的张量必须位于同一设备上。
技术原理探究
在多卡并行推理场景下,GLM-4V的视觉模块存在以下技术特点:
- 模型并行性:模型的不同层可能被分配到不同的GPU设备上
- 残差连接:Transformer架构中的残差连接要求输入和输出必须在同一设备上
- 特殊标记处理:视觉模块中的BOI(开始标记)和EOI(结束标记)需要与主计算流保持设备一致
解决方案实现
针对上述问题,我们通过对visual.py文件进行两处关键修改实现了多卡推理支持:
1. Transformer层设备一致性修复
在TransformerLayer类的forward方法中,我们显式确保MLP输出与输入位于同一设备:
class TransformerLayer(nn.Module):
def forward(self, hidden_states):
# ...原有代码...
mlp_output = self.post_attention_layernorm(self.mlp(mlp_input))
mlp_output = mlp_output.to(mlp_input.device) # 新增设备同步
output = mlp_input + mlp_output
return output
2. 视觉标记设备同步
在视觉模块的前向传播中,确保BOI和EOI标记与输入张量设备一致:
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
# ...原有代码...
boi = self.boi.expand(x.shape[0], -1, -1).to(x.device) # 设备同步
eoi = self.eoi.expand(x.shape[0], -1, -1).to(x.device) # 设备同步
x = torch.cat((boi, x, eoi), dim=1)
部署建议
- 硬件要求:每张GPU建议至少有16GB显存
- 软件版本:
- transformers ≥ 4.42.4
- torch ≥ 2.3.1
- 最佳实践:对于6卡及以上配置,建议检查模型拆分是否合理,部分模块可能不适合跨卡拆分
总结
通过显式管理张量设备位置,我们成功解决了GLM-4V在多卡环境下的设备不一致问题。这一解决方案已在官方代码库中合并,为大规模部署GLM-4V提供了可靠的技术支持。开发者现在可以充分利用多GPU的计算能力,实现高效的视觉-语言多模态推理。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218