GLM-4V多卡推理实现与设备一致性问题的解决方案
2025-06-03 11:41:13作者:史锋燃Gardner
背景介绍
GLM-4V作为新一代多模态大模型,在实际部署时经常需要利用多GPU进行推理加速。然而,开发者在尝试多卡部署时遇到了设备不一致的问题,表现为"Expected all tensors to be on the same device"错误。本文将深入分析问题原因并提供完整的解决方案。
问题现象分析
在多GPU环境下运行GLM-4V时,模型会抛出设备不一致的错误,具体表现为:
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:2 and cuda:3!
这种错误通常发生在视觉模块(visual.py)中的Transformer层前向传播过程中,特别是在残差连接操作时。根本原因是模型的不同部分被分配到了不同的GPU设备上,而PyTorch要求参与运算的张量必须位于同一设备上。
技术原理探究
在多卡并行推理场景下,GLM-4V的视觉模块存在以下技术特点:
- 模型并行性:模型的不同层可能被分配到不同的GPU设备上
- 残差连接:Transformer架构中的残差连接要求输入和输出必须在同一设备上
- 特殊标记处理:视觉模块中的BOI(开始标记)和EOI(结束标记)需要与主计算流保持设备一致
解决方案实现
针对上述问题,我们通过对visual.py文件进行两处关键修改实现了多卡推理支持:
1. Transformer层设备一致性修复
在TransformerLayer类的forward方法中,我们显式确保MLP输出与输入位于同一设备:
class TransformerLayer(nn.Module):
def forward(self, hidden_states):
# ...原有代码...
mlp_output = self.post_attention_layernorm(self.mlp(mlp_input))
mlp_output = mlp_output.to(mlp_input.device) # 新增设备同步
output = mlp_input + mlp_output
return output
2. 视觉标记设备同步
在视觉模块的前向传播中,确保BOI和EOI标记与输入张量设备一致:
def forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)":
# ...原有代码...
boi = self.boi.expand(x.shape[0], -1, -1).to(x.device) # 设备同步
eoi = self.eoi.expand(x.shape[0], -1, -1).to(x.device) # 设备同步
x = torch.cat((boi, x, eoi), dim=1)
部署建议
- 硬件要求:每张GPU建议至少有16GB显存
- 软件版本:
- transformers ≥ 4.42.4
- torch ≥ 2.3.1
- 最佳实践:对于6卡及以上配置,建议检查模型拆分是否合理,部分模块可能不适合跨卡拆分
总结
通过显式管理张量设备位置,我们成功解决了GLM-4V在多卡环境下的设备不一致问题。这一解决方案已在官方代码库中合并,为大规模部署GLM-4V提供了可靠的技术支持。开发者现在可以充分利用多GPU的计算能力,实现高效的视觉-语言多模态推理。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.28 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.43 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
214
288