GLM-4多卡推理中的设备一致性错误分析与解决方案
2025-06-04 00:51:58作者:董斯意
问题背景
在使用THUDM/GLM-4大语言模型进行多GPU推理时,开发者可能会遇到一个典型的设备不一致错误。该错误表现为模型在尝试拼接张量时发现这些张量分布在不同的CUDA设备上(如cuda:1和cuda:2),导致RuntimeError异常。
错误现象
当运行trans_web_demo.py推理脚本时,程序会在modeling_chatglm.py文件的627行抛出异常。具体错误信息显示系统期望所有张量位于同一设备上,但实际检测到张量分布在cuda:1和cuda:2两个不同的GPU设备上。
技术分析
这种设备不一致问题通常发生在以下场景:
- 多卡环境初始化不当:模型的不同部分被错误地分配到不同GPU设备
- KV缓存处理缺陷:在注意力机制中,键值缓存(kv_cache)与当前计算结果(presents)的设备不匹配
- 张量传输遗漏:在前向传播过程中,某些中间结果没有正确同步到目标设备
在GLM-4的原始实现中,transformer层的输出(presents)与从缓存中读取的kv_cache在拼接操作前未进行设备一致性检查,导致当它们位于不同设备时引发运行时错误。
解决方案
项目团队已经修复了这个问题,解决方案的核心是:
- 统一设备管理:确保模型所有组件在初始化时正确分配到同一设备
- 显式设备转换:在关键操作前强制张量设备对齐
- 缓存同步机制:保证KV缓存与当前计算使用相同的设备上下文
开发者需要获取最新的模型实现代码,特别是替换modeling_chatglm.py文件。新版本中修复了设备同步逻辑,确保在多卡环境下所有张量操作都在正确的设备上下文中执行。
最佳实践建议
- 环境检查:在模型初始化时验证所有组件是否位于预期设备
- 显式设备指定:对于关键操作,明确指定目标设备而非依赖默认值
- 错误处理:在拼接、广播等操作前添加设备一致性检查
- 版本控制:保持模型实现代码与官方最新版本同步
通过遵循这些实践,可以有效避免在多GPU环境中出现类似的设备不一致问题,确保GLM-4模型能够稳定地进行推理任务。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210