vLLM项目中GLM-4-32B-FP8模型运行异常问题分析与解决方案
2025-05-01 14:38:37作者:宣海椒Queenly
在深度学习推理框架vLLM的实际应用中,用户在使用GLM-4-32B-FP8模型时遇到了输出异常的问题。本文将深入分析这一问题的成因,并提供有效的解决方案。
问题现象
当用户在配备双RTX 4090显卡的环境下运行GLM-4-32B-FP8模型时,模型输出出现了连续的感叹号"!!!!!!"。相比之下,较小的GLM-4-9B模型在相同环境下运行正常。通过日志分析发现,这一问题源于计算过程中出现了NaN(非数字)错误。
环境配置分析
用户环境配置如下:
- 硬件:双NVIDIA RTX 4090显卡
- 软件:vLLM 0.8.4版本
- 模型:GLM-4-32B-0414-FP8
- 参数设置:float16精度、tensor_parallel_size=2
根本原因
经过技术分析,问题的主要原因在于:
- 数值稳定性问题:GLM-4-32B这样的大模型在float16精度下容易出现数值不稳定情况
- 精度不足:FP8格式的模型权重在float16环境下运算时,可能导致精度损失累积
- 模型规模影响:32B参数量的模型比9B模型对数值精度更为敏感
解决方案
针对这一问题,推荐以下解决方案:
-
提高计算精度:
- 将dtype参数从float16改为bfloat16
- 或者使用float32精度(但会显著增加显存占用)
-
配置调整建议:
llm = LLM(
model="/path/to/GLM-4-32B-0414-FP8",
dtype="bfloat16", # 关键修改
tensor_parallel_size=2,
# 其他参数保持不变
)
- 硬件考虑:
- 对于32B级别的大模型,建议使用具有更高显存的专业级显卡
- 确保CUDA和驱动版本兼容性
技术原理深入
大语言模型在低精度计算时容易出现梯度消失或爆炸问题。bfloat16相比float16具有更大的指数范围(8位vs5位),虽然牺牲了一些小数精度,但能更好地保持数值稳定性。这对于GLM-4-32B这样的大模型尤为重要。
实践建议
- 在部署大型模型前,应先进行小规模测试
- 监控推理过程中的数值稳定性指标
- 根据实际硬件条件平衡精度和性能
- 考虑使用混合精度训练技术来进一步提升稳定性
结论
通过将计算精度调整为bfloat16,可以有效解决GLM-4-32B-FP8模型在vLLM中的输出异常问题。这一案例也提醒我们,在部署大型语言模型时需要特别注意数值精度与模型规模的匹配关系,以确保推理过程的稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133