Async-profiler在JDK 23中的兼容性问题分析与解决方案
问题背景
Async-profiler是一款广泛使用的Java性能分析工具,它通过低开销的方式收集JVM的运行数据。近期,随着JDK 23的开发推进,用户在使用async-profiler时遇到了严重的崩溃问题。这个问题特别值得关注,因为它涉及到JDK内部结构的变更对性能分析工具的影响。
问题现象
当用户尝试在基于最新JDK 23-ea构建的环境中使用async-profiler(包括2.9和3.0版本)时,JVM会抛出SIGSEGV信号导致崩溃。错误信息显示问题发生在NMethod::isNMethod()函数中,这表明profiler在尝试访问JVM内部数据结构时出现了内存访问异常。
根本原因分析
经过深入调查,发现问题源于JDK代码库中的一个关键变更。这个变更修改了HeapBlock头部的结构大小,而这个结构在过去的18年中一直保持稳定。由于async-profiler为了性能考虑,将这个大小硬编码在代码中,当JDK 23改变了这个结构后,就导致了内存访问越界和程序崩溃。
具体来说,async-profiler需要访问JVM内部的方法对象(NMethod)信息来进行性能分析。为了高效地识别这些方法对象,它直接访问JVM内存中的特定数据结构。当底层结构发生变化而profiler仍使用旧的偏移量时,就会引发内存访问错误。
解决方案
开发团队迅速响应并实施了修复方案。新的实现不再硬编码HeapBlock头部大小,而是通过查询VMStructs动态获取这个值。VMStructs是JVM提供的一个内部机制,允许外部工具查询JVM内部数据结构的信息,这为工具提供了更好的兼容性。
需要注意的是,虽然主要问题已经解决,但在JDK 23上使用cstack=vm选项仍然存在一些限制,这部分功能将在后续更新中完善。
影响范围与临时解决方案
这个问题影响了所有尝试在JDK 23上使用async-profiler 2.9和3.0版本的用户。对于急需在JDK 23环境下进行性能分析的用户,可以采用以下临时方案:
- 使用开发团队提供的nightly构建版本,其中已包含修复
- 等待即将发布的正式版本更新
经验教训
这个事件凸显了性能分析工具与JVM实现之间的紧密耦合关系。对于工具开发者而言,它提醒我们:
- 尽量减少对JVM内部实现的假设和硬编码
- 尽可能使用官方提供的查询接口获取运行时信息
- 建立完善的版本兼容性测试机制
对于用户而言,当使用最新JDK版本时,应该:
- 关注所用工具的最新版本和兼容性说明
- 考虑使用工具的最新开发版本以获得更好的兼容性
- 及时报告遇到的兼容性问题
结论
async-profiler团队对JDK 23兼容性问题的快速响应展示了开源社区的活力。通过这次修复,工具将能够继续在最新的Java平台上为用户提供可靠的性能分析能力。随着JDK 23的正式发布临近,建议所有用户及时更新到包含此修复的async-profiler版本,以确保性能分析工作的顺利进行。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00