Apache Doris 工作负载管理:并发控制与查询排队机制深度解析
2025-06-27 15:10:47作者:昌雅子Ethen
引言
在大规模数据分析场景中,数据库系统经常面临高并发查询请求的挑战。Apache Doris 作为一款高性能的MPP分析型数据库,提供了完善的并发控制与查询排队机制,帮助管理员有效管理系统资源,保障关键业务的稳定运行。本文将深入剖析Doris的并发控制原理、实现机制以及最佳实践。
并发控制基础概念
为什么需要并发控制?
当大量查询同时请求系统资源时,如果没有合理的控制机制,可能会导致:
- 系统资源耗尽(如内存溢出)
- 关键查询响应时间激增
- 整体系统稳定性下降
Doris的解决方案
Apache Doris通过**工作负载组(Workload Group)**实现细粒度的资源管理,每个组可以独立配置:
- 最大并发查询数
- 查询队列长度
- 队列超时时间
工作负载组配置详解
创建基础工作负载组
CREATE WORKLOAD GROUP IF NOT EXISTS analytics_group
PROPERTIES (
"max_concurrency" = "20",
"max_queue_size" = "50",
"queue_timeout" = "5000"
);
核心参数说明
| 参数名称 | 数据类型 | 默认值 | 取值范围 | 功能说明 |
|---|---|---|---|---|
| max_concurrency | 整型 | 2147483647 | [0,2147483647] | 最大并发查询数,达到限制后新查询进入队列 |
| max_queue_size | 整型 | 0 | [0,2147483647] | 查询队列最大长度,0表示不启用队列 |
| queue_timeout | 整型 | 0 | [0,2147483647] | 查询在队列中的最大等待时间(毫秒) |
集群部署注意事项
重要特性:当前版本的并发控制是基于单个FE节点实现的。例如:
- 3节点集群配置max_concurrency=10,实际最大并发可能达到30
- 1节点集群配置max_concurrency=10,则严格限制为10
监控与管理实践
查看工作负载组状态
SHOW WORKLOAD GROUPS\G;
关键输出字段解析:
running_query_num:当前正在执行的查询数量waiting_query_num:队列中等待的查询数量cpu_share:CPU资源分配权重memory_limit:内存使用上限
管理技巧
-
紧急查询处理:管理员可通过设置会话变量绕过排队机制
SET bypass_workload_group = true; -
动态调整:根据业务高峰时段灵活调整并发参数
ALTER WORKLOAD GROUP analytics_group SET PROPERTIES ("max_concurrency"="30");
高级配置建议
内存管理参数
CREATE WORKLOAD GROUP memory_sensitive_group
PROPERTIES (
"memory_limit" = "30%",
"memory_low_watermark" = "40%",
"memory_high_watermark" = "70%"
);
IO限制参数
ALTER WORKLOAD GROUP io_limit_group
SET PROPERTIES (
"read_bytes_per_second" = "104857600", -- 100MB/s
"remote_read_bytes_per_second" = "52428800" -- 50MB/s
);
典型应用场景
场景一:混合负载隔离
-- 创建实时分析组
CREATE WORKLOAD GROUP realtime_analytics
PROPERTIES ("max_concurrency" = "5", "cpu_share" = "80");
-- 创建后台报表组
CREATE WORKLOAD GROUP batch_reports
PROPERTIES ("max_concurrency" = "3", "queue_timeout" = "10000");
场景二:资源保障
-- 保障VIP用户的查询资源
CREATE WORKLOAD GROUP vip_users
PROPERTIES (
"max_concurrency" = "10",
"cpu_share" = "100",
"memory_limit" = "40%"
);
常见问题排查
-
查询被拒绝:
- 检查队列是否已满(max_queue_size)
- 确认队列超时时间(queue_timeout)设置
-
资源争用:
- 监控running_query_num和waiting_query_num
- 调整cpu_share分配权重
-
内存不足:
- 检查memory_limit设置
- 考虑启用enable_memory_overcommit
总结
Apache Doris的并发控制与查询排队机制为大规模分析场景提供了可靠的资源保障。通过合理配置工作负载组,管理员可以实现:
- 关键业务优先执行
- 系统资源合理分配
- 高负载下的稳定运行
建议用户根据实际业务特点,设计多层次的资源隔离策略,并定期监控系统负载情况,动态调整资源配置参数。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350