Great Expectations中自定义SQL查询期望的实现与演进
2025-05-22 03:38:01作者:申梦珏Efrain
在数据质量验证工具Great Expectations的版本迭代过程中,自定义SQL查询期望的实现方式发生了重要变化。本文将从技术实现角度分析这一演进过程,并探讨当前版本下的最佳实践方案。
历史版本中的实现方式
在Great Expectations早期版本(如0.18.x)中,系统提供了多种基于SQL查询的自定义期望类型。这些类型允许用户直接编写SQL语句来验证数据质量,包括但不限于:
- 自定义查询期望(CustomQueryExpectation)
- 自定义表期望(CustomTableExpectation)
- 自定义列映射期望(CustomColumnMapExpectation)
这些实现方式通过特定的基类和装饰器模式,让用户能够灵活地定义各种SQL查询逻辑。例如,开发者可以创建返回特定百分比值的查询,或者实现复杂的跨表关联验证。
版本演进带来的变化
随着Great Expectations架构的演进,1.0及以上版本对自定义期望的实现方式进行了重构。这种变化主要基于以下技术考量:
- 架构简化:减少特殊场景的专用基类,采用更统一的扩展机制
- 性能优化:集中处理查询执行和结果解析逻辑
- 维护性提升:降低自定义实现的复杂度
在当前版本中,系统主要保留了UnexpectedRowsExpectation这一SQL查询期望类型,它专注于识别不符合预期的数据行。
当前技术实现方案
对于需要实现百分比统计等聚合计算的场景,建议采用ColumnAggregateExpectation模式。这种实现方式具有以下技术优势:
- 标准化接口:遵循统一的聚合计算规范
- 优化执行:利用底层引擎的聚合计算能力
- 结果集成:与Great Expectations的验证结果体系无缝衔接
实现自定义聚合期望时,开发者需要:
- 继承ColumnAggregateExpectation基类
- 实现必要的验证逻辑方法
- 定义结果格式化方式
- 注册自定义期望类型
技术选型建议
在选择实现方案时,应考虑以下因素:
- 查询复杂度:简单聚合推荐使用ColumnAggregateExpectation,复杂跨表查询可考虑自定义指标
- 性能需求:大数据量场景下应优先使用原生聚合功能
- 维护成本:标准化的实现方式更易于长期维护
对于确实需要复杂SQL查询的场景,可以通过组合自定义指标(Metrics)和自定义期望的方式实现,这需要更深入理解Great Expectations的运行时架构。
未来演进方向
根据社区发展趋势,Great Expectations可能会:
- 增强SQL查询期望的灵活性
- 提供更丰富的内置聚合函数
- 优化自定义实现的开发体验
开发者应关注官方文档更新,及时了解最佳实践的演进。对于关键业务场景的实现,建议进行充分的版本兼容性测试。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873