Great Expectations中自定义SQL查询期望的实现与演进
2025-05-22 09:08:53作者:申梦珏Efrain
在数据质量验证工具Great Expectations的版本迭代过程中,自定义SQL查询期望的实现方式发生了重要变化。本文将从技术实现角度分析这一演进过程,并探讨当前版本下的最佳实践方案。
历史版本中的实现方式
在Great Expectations早期版本(如0.18.x)中,系统提供了多种基于SQL查询的自定义期望类型。这些类型允许用户直接编写SQL语句来验证数据质量,包括但不限于:
- 自定义查询期望(CustomQueryExpectation)
- 自定义表期望(CustomTableExpectation)
- 自定义列映射期望(CustomColumnMapExpectation)
这些实现方式通过特定的基类和装饰器模式,让用户能够灵活地定义各种SQL查询逻辑。例如,开发者可以创建返回特定百分比值的查询,或者实现复杂的跨表关联验证。
版本演进带来的变化
随着Great Expectations架构的演进,1.0及以上版本对自定义期望的实现方式进行了重构。这种变化主要基于以下技术考量:
- 架构简化:减少特殊场景的专用基类,采用更统一的扩展机制
- 性能优化:集中处理查询执行和结果解析逻辑
- 维护性提升:降低自定义实现的复杂度
在当前版本中,系统主要保留了UnexpectedRowsExpectation这一SQL查询期望类型,它专注于识别不符合预期的数据行。
当前技术实现方案
对于需要实现百分比统计等聚合计算的场景,建议采用ColumnAggregateExpectation模式。这种实现方式具有以下技术优势:
- 标准化接口:遵循统一的聚合计算规范
- 优化执行:利用底层引擎的聚合计算能力
- 结果集成:与Great Expectations的验证结果体系无缝衔接
实现自定义聚合期望时,开发者需要:
- 继承ColumnAggregateExpectation基类
- 实现必要的验证逻辑方法
- 定义结果格式化方式
- 注册自定义期望类型
技术选型建议
在选择实现方案时,应考虑以下因素:
- 查询复杂度:简单聚合推荐使用ColumnAggregateExpectation,复杂跨表查询可考虑自定义指标
- 性能需求:大数据量场景下应优先使用原生聚合功能
- 维护成本:标准化的实现方式更易于长期维护
对于确实需要复杂SQL查询的场景,可以通过组合自定义指标(Metrics)和自定义期望的方式实现,这需要更深入理解Great Expectations的运行时架构。
未来演进方向
根据社区发展趋势,Great Expectations可能会:
- 增强SQL查询期望的灵活性
- 提供更丰富的内置聚合函数
- 优化自定义实现的开发体验
开发者应关注官方文档更新,及时了解最佳实践的演进。对于关键业务场景的实现,建议进行充分的版本兼容性测试。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.65 K
Ascend Extension for PyTorch
Python
131
157
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
458
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
610
198
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.46 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
206