GLM-4多卡运行问题分析与解决方案
2025-06-04 02:11:17作者:胡易黎Nicole
问题背景
在GLM-4项目使用过程中,用户尝试在多GPU环境下运行trans_web_demo.py脚本时遇到了设备不匹配的错误。具体表现为运行时错误提示"Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:1!"。这个问题主要出现在多GPU配置的系统中,当模型尝试在不同GPU设备间进行张量操作时发生。
错误原因分析
该问题的根本原因是模型在多个GPU设备上分布不均,导致在进行张量拼接操作时,输入张量位于不同的设备上。具体来说:
- 模型可能被自动分配到多个GPU上,但某些操作要求所有输入张量必须位于同一设备
- 默认的device_map="cuda"设置可能无法正确处理多GPU情况
- 模型实现中的某些层可能没有正确处理跨设备张量
解决方案
方法一:更新模型实现文件
通过更新modeling_chatglm.py文件可以解决此问题。这个文件包含了模型的核心实现逻辑,更新后的版本能够更好地处理多GPU情况下的设备分配问题。
方法二:修改设备映射配置
在模型加载时,将device_map参数从"cuda"改为"auto",可以让Hugging Face的自动设备映射机制更智能地分配模型到多个GPU上:
self.model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map="auto", # 修改为自动设备映射
).eval()
方法三:单GPU运行
如果多GPU支持不是必须的,也可以选择在单个GPU上运行模型,这通常能避免设备不匹配的问题:
self.model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map="cuda:0", # 指定使用第一个GPU
).eval()
注意事项
- 不同版本的PyTorch和CUDA可能对多GPU支持有不同表现
- 混合使用不同型号的GPU可能导致问题(如RTX 2080 Ti和GTX 1070混用)
- 确保所有相关依赖库(如transformers、accelerate等)都是最新版本
- 在某些特殊应用场景(如评估框架)中,可能需要额外的配置
最佳实践建议
对于大多数用户,推荐以下步骤:
- 首先尝试更新modeling_chatglm.py文件
- 如果问题仍然存在,修改device_map为"auto"
- 确保系统环境一致,避免混合使用不同架构的GPU
- 对于生产环境,建议使用统一型号的GPU集群
通过以上方法,大多数多GPU运行问题都能得到有效解决。如果遇到更复杂的情况,可能需要根据具体错误信息进一步分析模型在各设备上的分布情况。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355