探索Transformer新边界:Anchor DETR,智能检测的革新者
2024-05-21 11:39:52作者:段琳惟
项目简介
Anchor DETR,一个基于Transformer架构的创新型物体检测器,现已成为GitHub上的热门项目。这个官方实现版引入了锚点查询设计,巧妙解决了"一区域多对象"的难题,并提出了一种注意力变体RCDA,有效降低了高分辨率特征处理时的内存成本。
技术剖析
Anchor DETR的核心在于将锚点编码为对象查询,这使得模型能够更加高效地捕获图像中的目标信息。同时,通过附加多种模式到每个锚点上,它能够应对同一区域内可能存在多个物体的问题。RCDA(Reduced Cross-Dimentional Attention)是其独创性贡献之一,这项注意力机制优化了计算效率,即使在处理高分辨率特征时也能保持高速运行。
应用场景与优势
Anchor DETR不仅适用于常规的物体检测任务,如图像解析和自动驾驶场景,还特别适合需要处理复杂背景和密集目标的场合。例如,在城市街景识别或监控视频分析中,其精准且快速的目标定位能力将发挥巨大作用。相较于其他同类框架,Anchor DETR在保持高性能的同时,显著提高了推断速度,使其成为实时应用的理想选择。
项目特点
- 创新查询设计:利用锚点作为对象查询,增强模型对目标的理解。
- RCDA技术:降低高分辨率特征处理的内存需求,提高计算效率。
- 高效性能:与基线相比,Anchor DETR在较少的训练轮数内达到更高的AP值,同时提供更快的推理速度。
- 易于使用:提供详尽的训练和评估指南,以及预训练模型,便于研究人员快速上手。
为了验证其性能,项目提供了ResNet-50和ResNet-101不同后端的预训练模型,以及相应的训练日志。只需简单几步,您就能在自己的环境中部署并体验Anchor DETR的强大功能。
如果你正寻找一个既能提升检测精度又能加快速度的物体检测解决方案,Anchor DETR无疑是一个值得尝试的选择。立即加入社区,一同探索Transformer在计算机视觉领域的无限可能!
@inproceedings{wang2022anchor,
title={Anchor detr: Query design for transformer-based detector},
author={Wang, Yingming and Zhang, Xiangyu and Yang, Tong and Sun, Jian},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={36},
number={3},
pages={2567--2575},
year={2022}
}
有任何疑问或建议,欢迎随时在项目页面打开问题或者直接联系wangyingming@megvii.com。我们期待你的参与,一起推动技术创新!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1