首页
/ AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像

AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像

2025-07-06 06:01:22作者:郦嵘贵Just

AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像包含了流行的深度学习框架及其依赖项,可以帮助开发者快速部署和运行深度学习应用。最新发布的v1.26版本提供了基于PyTorch 2.5.1的推理容器镜像,支持Python 3.11环境。

镜像特性与内容

此次发布的DLC镜像包含两个主要版本:CPU版本和GPU版本。CPU版本基于Ubuntu 22.04系统,而GPU版本则支持CUDA 12.4加速计算。两个版本都预装了PyTorch 2.5.1及其生态工具链,包括torchaudio、torchvision等组件。

镜像中集成了丰富的Python包生态,包括数据处理和分析工具如NumPy 2.1.3、Pandas 2.2.3、SciPy 1.14.1,计算机视觉库OpenCV 4.10.0.84,以及AWS服务相关的boto3、awscli等工具包。这些预装组件大大简化了深度学习应用的部署流程。

技术规格详解

CPU版本镜像使用PyTorch 2.5.1的CPU编译版本,适合不需要GPU加速的推理场景。它包含了torchserve 0.12.0模型服务框架和torch-model-archiver模型打包工具,可以方便地将训练好的模型部署为生产服务。

GPU版本镜像则针对NVIDIA GPU进行了优化,包含CUDA 12.4工具链和cuDNN加速库。除了CPU版本的所有功能外,还增加了MPI支持(通过mpi4py 4.0.1),适合需要分布式推理的高性能场景。

两个版本都基于Ubuntu 22.04 LTS操作系统,确保了系统的稳定性和长期支持。镜像中还包含了开发者工具如Emacs编辑器,方便在容器内直接进行代码编辑和调试。

应用场景与优势

这些预构建的DLC镜像特别适合以下场景:

  1. 快速部署PyTorch推理服务,无需从零开始配置环境
  2. 在AWS EC2实例上运行深度学习推理工作负载
  3. 构建可复现的机器学习推理流水线
  4. 需要标准化、可扩展的模型服务基础设施

使用这些镜像可以显著减少环境配置时间,避免依赖冲突问题,同时确保生产环境的一致性和可靠性。AWS定期更新这些镜像,包含最新的安全补丁和性能优化,让开发者可以专注于模型和应用开发,而不是基础设施维护。

总结

AWS Deep Learning Containers的这次更新为PyTorch用户带来了最新的2.5.1版本支持,同时保持了与Python 3.11生态系统的兼容性。无论是需要CPU推理还是GPU加速的场景,开发者都可以找到合适的预配置镜像快速启动项目。这些经过充分测试和优化的容器镜像,是部署生产级机器学习服务的理想选择。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
223
2.26 K
flutter_flutterflutter_flutter
暂无简介
Dart
525
116
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
JavaScript
210
286
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
frameworksframeworks
openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
984
581
pytorchpytorch
Ascend Extension for PyTorch
Python
67
97
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94
GLM-4.6GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
44
0