首页
/ Super-Gradients项目中YOLO NAS多GPU训练时的Segmentation Fault问题分析

Super-Gradients项目中YOLO NAS多GPU训练时的Segmentation Fault问题分析

2025-06-11 12:01:19作者:羿妍玫Ivan

问题背景

在使用Super-Gradients项目训练YOLO NAS模型时,当采用多GPU分布式数据并行(DDP)模式时,训练过程会在结束时出现Segmentation Fault错误。虽然训练能够正常完成且检查点会被保存,但程序异常终止会给自动化训练流程带来不便。

现象描述

训练过程中,模型能够正常完成一个epoch的训练和验证,各项指标也能正常输出。但在训练结束后,程序会抛出Segmentation Fault错误,错误堆栈显示问题发生在DDP的清理阶段。具体表现为:

  1. 训练和验证过程正常完成
  2. 检查点被正确保存
  3. 最终出现Python致命错误:Segmentation fault
  4. 错误堆栈指向torch.distributed.elastic.utils.store模块

技术分析

从错误堆栈分析,问题发生在DDP训练结束后的清理阶段,具体是在进程同步和资源释放时。这类问题通常与以下因素有关:

  1. PyTorch版本兼容性问题:用户使用的是PyTorch 1.11.0+cu113版本,这个版本在DDP实现上可能存在一些已知问题。

  2. CUDA与PyTorch版本匹配:用户的CUDA运行时版本为11.7,而PyTorch构建时使用的是CUDA 11.3,这种版本不匹配可能导致底层CUDA操作出现问题。

  3. DDP进程同步问题:在多进程训练结束时,各进程需要同步状态并释放资源,如果某个进程提前退出或资源释放顺序不当,可能导致段错误。

解决方案

针对这个问题,推荐采取以下解决方案:

  1. 升级PyTorch版本:建议将PyTorch升级到2.0-2.2版本,这些版本在DDP实现上更加稳定,修复了许多已知问题。

  2. 确保版本匹配:升级后应确保PyTorch构建版本与本地CUDA版本匹配,避免因版本不一致导致的问题。

  3. 环境一致性:建议使用conda或pip统一管理所有深度学习相关依赖,避免混合使用系统安装和pip安装的库。

注意事项

  1. 目前Super-Gradients 3.7.1版本尚不支持PyTorch 2.3,升级时应注意版本兼容性。

  2. 在多GPU训练环境下,建议使用容器化技术(如Docker)来保证环境一致性,减少因环境配置差异导致的问题。

  3. 对于生产环境,建议在升级前先在测试环境中验证新版本的稳定性。

总结

YOLO NAS模型在多GPU训练时出现的Segmentation Fault问题主要源于PyTorch早期版本在DDP实现上的缺陷。通过升级PyTorch到较新的稳定版本,可以有效解决此类问题。同时,保持深度学习环境中各组件版本的匹配和一致性,是预防类似问题的关键。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133