Super-Gradients项目中YOLO NAS多GPU训练时的Segmentation Fault问题分析
问题背景
在使用Super-Gradients项目训练YOLO NAS模型时,当采用多GPU分布式数据并行(DDP)模式时,训练过程会在结束时出现Segmentation Fault错误。虽然训练能够正常完成且检查点会被保存,但程序异常终止会给自动化训练流程带来不便。
现象描述
训练过程中,模型能够正常完成一个epoch的训练和验证,各项指标也能正常输出。但在训练结束后,程序会抛出Segmentation Fault错误,错误堆栈显示问题发生在DDP的清理阶段。具体表现为:
- 训练和验证过程正常完成
- 检查点被正确保存
- 最终出现Python致命错误:Segmentation fault
- 错误堆栈指向torch.distributed.elastic.utils.store模块
技术分析
从错误堆栈分析,问题发生在DDP训练结束后的清理阶段,具体是在进程同步和资源释放时。这类问题通常与以下因素有关:
-
PyTorch版本兼容性问题:用户使用的是PyTorch 1.11.0+cu113版本,这个版本在DDP实现上可能存在一些已知问题。
-
CUDA与PyTorch版本匹配:用户的CUDA运行时版本为11.7,而PyTorch构建时使用的是CUDA 11.3,这种版本不匹配可能导致底层CUDA操作出现问题。
-
DDP进程同步问题:在多进程训练结束时,各进程需要同步状态并释放资源,如果某个进程提前退出或资源释放顺序不当,可能导致段错误。
解决方案
针对这个问题,推荐采取以下解决方案:
-
升级PyTorch版本:建议将PyTorch升级到2.0-2.2版本,这些版本在DDP实现上更加稳定,修复了许多已知问题。
-
确保版本匹配:升级后应确保PyTorch构建版本与本地CUDA版本匹配,避免因版本不一致导致的问题。
-
环境一致性:建议使用conda或pip统一管理所有深度学习相关依赖,避免混合使用系统安装和pip安装的库。
注意事项
-
目前Super-Gradients 3.7.1版本尚不支持PyTorch 2.3,升级时应注意版本兼容性。
-
在多GPU训练环境下,建议使用容器化技术(如Docker)来保证环境一致性,减少因环境配置差异导致的问题。
-
对于生产环境,建议在升级前先在测试环境中验证新版本的稳定性。
总结
YOLO NAS模型在多GPU训练时出现的Segmentation Fault问题主要源于PyTorch早期版本在DDP实现上的缺陷。通过升级PyTorch到较新的稳定版本,可以有效解决此类问题。同时,保持深度学习环境中各组件版本的匹配和一致性,是预防类似问题的关键。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00