Super-Gradients项目中YOLO NAS多GPU训练时的Segmentation Fault问题分析
问题背景
在使用Super-Gradients项目训练YOLO NAS模型时,当采用多GPU分布式数据并行(DDP)模式时,训练过程会在结束时出现Segmentation Fault错误。虽然训练能够正常完成且检查点会被保存,但程序异常终止会给自动化训练流程带来不便。
现象描述
训练过程中,模型能够正常完成一个epoch的训练和验证,各项指标也能正常输出。但在训练结束后,程序会抛出Segmentation Fault错误,错误堆栈显示问题发生在DDP的清理阶段。具体表现为:
- 训练和验证过程正常完成
- 检查点被正确保存
- 最终出现Python致命错误:Segmentation fault
- 错误堆栈指向torch.distributed.elastic.utils.store模块
技术分析
从错误堆栈分析,问题发生在DDP训练结束后的清理阶段,具体是在进程同步和资源释放时。这类问题通常与以下因素有关:
-
PyTorch版本兼容性问题:用户使用的是PyTorch 1.11.0+cu113版本,这个版本在DDP实现上可能存在一些已知问题。
-
CUDA与PyTorch版本匹配:用户的CUDA运行时版本为11.7,而PyTorch构建时使用的是CUDA 11.3,这种版本不匹配可能导致底层CUDA操作出现问题。
-
DDP进程同步问题:在多进程训练结束时,各进程需要同步状态并释放资源,如果某个进程提前退出或资源释放顺序不当,可能导致段错误。
解决方案
针对这个问题,推荐采取以下解决方案:
-
升级PyTorch版本:建议将PyTorch升级到2.0-2.2版本,这些版本在DDP实现上更加稳定,修复了许多已知问题。
-
确保版本匹配:升级后应确保PyTorch构建版本与本地CUDA版本匹配,避免因版本不一致导致的问题。
-
环境一致性:建议使用conda或pip统一管理所有深度学习相关依赖,避免混合使用系统安装和pip安装的库。
注意事项
-
目前Super-Gradients 3.7.1版本尚不支持PyTorch 2.3,升级时应注意版本兼容性。
-
在多GPU训练环境下,建议使用容器化技术(如Docker)来保证环境一致性,减少因环境配置差异导致的问题。
-
对于生产环境,建议在升级前先在测试环境中验证新版本的稳定性。
总结
YOLO NAS模型在多GPU训练时出现的Segmentation Fault问题主要源于PyTorch早期版本在DDP实现上的缺陷。通过升级PyTorch到较新的稳定版本,可以有效解决此类问题。同时,保持深度学习环境中各组件版本的匹配和一致性,是预防类似问题的关键。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00