Super-Gradients项目中YOLO NAS多GPU训练时的Segmentation Fault问题分析
问题背景
在使用Super-Gradients项目训练YOLO NAS模型时,当采用多GPU分布式数据并行(DDP)模式时,训练过程会在结束时出现Segmentation Fault错误。虽然训练能够正常完成且检查点会被保存,但程序异常终止会给自动化训练流程带来不便。
现象描述
训练过程中,模型能够正常完成一个epoch的训练和验证,各项指标也能正常输出。但在训练结束后,程序会抛出Segmentation Fault错误,错误堆栈显示问题发生在DDP的清理阶段。具体表现为:
- 训练和验证过程正常完成
- 检查点被正确保存
- 最终出现Python致命错误:Segmentation fault
- 错误堆栈指向torch.distributed.elastic.utils.store模块
技术分析
从错误堆栈分析,问题发生在DDP训练结束后的清理阶段,具体是在进程同步和资源释放时。这类问题通常与以下因素有关:
-
PyTorch版本兼容性问题:用户使用的是PyTorch 1.11.0+cu113版本,这个版本在DDP实现上可能存在一些已知问题。
-
CUDA与PyTorch版本匹配:用户的CUDA运行时版本为11.7,而PyTorch构建时使用的是CUDA 11.3,这种版本不匹配可能导致底层CUDA操作出现问题。
-
DDP进程同步问题:在多进程训练结束时,各进程需要同步状态并释放资源,如果某个进程提前退出或资源释放顺序不当,可能导致段错误。
解决方案
针对这个问题,推荐采取以下解决方案:
-
升级PyTorch版本:建议将PyTorch升级到2.0-2.2版本,这些版本在DDP实现上更加稳定,修复了许多已知问题。
-
确保版本匹配:升级后应确保PyTorch构建版本与本地CUDA版本匹配,避免因版本不一致导致的问题。
-
环境一致性:建议使用conda或pip统一管理所有深度学习相关依赖,避免混合使用系统安装和pip安装的库。
注意事项
-
目前Super-Gradients 3.7.1版本尚不支持PyTorch 2.3,升级时应注意版本兼容性。
-
在多GPU训练环境下,建议使用容器化技术(如Docker)来保证环境一致性,减少因环境配置差异导致的问题。
-
对于生产环境,建议在升级前先在测试环境中验证新版本的稳定性。
总结
YOLO NAS模型在多GPU训练时出现的Segmentation Fault问题主要源于PyTorch早期版本在DDP实现上的缺陷。通过升级PyTorch到较新的稳定版本,可以有效解决此类问题。同时,保持深度学习环境中各组件版本的匹配和一致性,是预防类似问题的关键。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









