Apache Fury项目中Java序列化器的内存管理与性能优化
2025-06-25 05:44:48作者:钟日瑜
在Apache Fury项目中,Java序列化器的性能优化一直是一个重要课题。最近开发者发现了一个与JVM垃圾回收机制相关的性能问题:当系统内存压力增大时,序列化器类会被重新编译,导致序列化性能下降。
问题背景
在Java应用中,序列化框架通常会动态生成序列化器类来提高性能。Apache Fury也不例外,它通过CodeGenerator动态生成针对特定类型的序列化器。然而,当JVM内存不足触发Full GC时,这些生成的序列化器可能会被回收,之后需要重新生成和编译,这个过程会带来明显的性能开销。
技术原理分析
JVM中的引用类型分为强引用(Strong Reference)、软引用(Soft Reference)和弱引用(Weak Reference)。当前Fury的实现可能过度依赖了某种引用类型:
- 强引用:只要引用存在,对象就不会被回收
- 软引用:在内存不足时会被回收
- 弱引用:在下次GC时就会被回收
序列化器的重新编译问题通常发生在以下场景:
- 系统内存压力增大
- JVM触发Full GC
- 序列化器实例被回收
- 下次使用时需要重新生成和编译类
优化方案
针对这个问题,开发者提出了一个混合引用策略的解决方案:
-
Fury实例持有强引用:让Fury实例本身持有生成的序列化器的强引用,确保在Fury实例存活期间序列化器不会被回收。
-
混合引用策略:使用
WeakReference和SoftReference的组合来管理缓存:- 首先尝试使用
WeakReference保持引用 - 当内存压力增大时,升级为
SoftReference - 这种策略可以延迟GC回收序列化器的时间
- 首先尝试使用
-
分层缓存设计:
- 第一层:强引用缓存(小容量)
- 第二层:软引用缓存(中等容量)
- 第三层:弱引用缓存(大容量)
这种设计可以在内存使用和性能之间取得平衡,既避免了频繁的重新编译,又不会导致内存泄漏。
实现考虑
在实际实现中,还需要考虑以下因素:
- 缓存大小控制:需要根据应用场景调整各层缓存的大小
- 并发访问:缓存需要线程安全
- 清理策略:定期清理不再使用的序列化器
- 监控机制:记录缓存命中率和重新编译次数
性能影响
这种优化可以显著减少以下情况的发生:
- 减少序列化器的重新编译次数
- 降低因重新编译导致的延迟峰值
- 提高高负载情况下的序列化吞吐量
- 保持合理的内存使用率
结论
Apache Fury通过改进序列化器的缓存管理策略,有效解决了内存压力下性能下降的问题。这种混合引用策略的设计思路不仅适用于序列化框架,对于其他需要平衡内存使用和性能的Java应用场景也有参考价值。开发者可以根据具体应用特点,调整引用策略和缓存层次,找到最适合自己应用场景的平衡点。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355