Optax项目中SGD优化器Nesterov动量公式的修正分析
2025-07-07 11:32:42作者:裘晴惠Vivianne
在深度学习优化算法中,带有Nesterov动量的随机梯度下降(SGD)是一种广泛使用的优化技术。近期在google-deepmind的optax项目中发现并修正了该算法数学描述中的一个重要错误。
原问题描述
optax项目中关于SGD with Nesterov动量的数学伪代码存在两个主要问题:
- 当
nesterov=False时,动量项m_t的定义存在循环引用问题 - 动量项
m_t本身的数学表达式不正确
正确的数学表达
经过深入分析Sutskever等人的经典论文《On the importance of initialization and momentum in deep learning》,正确的数学表达式应为:
对于标准动量SGD:
m_t = μ * m_{t-1} + g_t
x_{t+1} = x_t - ϵ * m_t
对于Nesterov动量SGD:
m_t = μ * m_{t-1} + g_t
x_{t+1} = x_t - ϵ * (μ * m_t + g_t)
或者等价地表示为:
m_t = μ * m_{t-1} + g_t
x_{t+1} = x_t - ϵ * (g_t + μ * m_t)
技术背景
Nesterov动量是标准动量SGD的改进版本,由Yurii Nesterov提出。与标准动量不同,Nesterov动量先根据当前动量方向进行"前瞻",然后在该位置计算梯度,使得参数更新更加准确。
在实现上,Nesterov动量和标准动量的主要区别在于参数更新步骤。标准动量直接使用累积的动量方向更新参数,而Nesterov动量则结合了当前梯度和动量方向进行更新。
影响分析
这个公式错误可能导致以下问题:
- 当禁用Nesterov动量时,由于循环定义可能导致实现错误或数值不稳定
- 启用Nesterov动量时,参数更新方向计算不准确,可能影响模型收敛性能
修正意义
正确的数学表达对于:
- 算法实现的准确性至关重要
- 保证优化器的理论收敛性质
- 复现相关研究结果具有基础性作用
这一修正确保了optax项目中SGD优化器的数学正确性,为使用者提供了可靠的优化工具。对于深度学习研究者和实践者来说,理解这些基础优化算法的正确形式是进行有效模型训练的重要前提。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
233
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704