在Optax中使用带额外参数的函数进行优化
2025-07-07 23:44:35作者:俞予舒Fleming
Optax是Google DeepMind开发的一个基于JAX的优化库,提供了各种优化算法和工具。本文将介绍如何在Optax中使用带有额外参数的函数进行优化,特别是与回溯线搜索(backtracking linesearch)结合使用时需要注意的事项。
问题背景
在使用Optax进行优化时,我们经常会遇到目标函数需要额外参数的情况。例如,一个简单的二次函数可能需要一个额外的偏移量参数:
def fn(x, y):
return jnp.sum((x + y) ** 2)
当这样的函数与Optax的回溯线搜索优化器结合使用时,需要特别注意参数的传递方式。
解决方案
1. 使用value_and_grad_from_state
Optax提供了value_and_grad_from_state
函数,它可以自动处理带有状态的梯度计算。使用时需要注意:
value_and_grad = optax.value_and_grad_from_state(fn)
2. 传递额外参数
当使用回溯线搜索优化器时,所有额外的函数参数都需要在update
调用中显式传递:
updates, opt_state = solver.update(
grad, opt_state, params,
value=value, grad=grad,
value_fn=fn,
y=y # 额外参数必须在此处传递
)
3. 替代方案
虽然optax.value_and_grad_from_state
很方便,但你也可以直接使用JAX原生的jax.value_and_grad
函数:
value_and_grad = jax.value_and_grad(fn)
这种方法同样有效,但需要手动处理状态相关的逻辑。
完整示例
下面是一个完整的示例,展示了如何正确使用带有额外参数的函数进行优化:
import optax
import jax.numpy as jnp
def fn(x, y):
return jnp.sum((x + y) ** 2)
# 创建优化器链:SGD + 回溯线搜索
solver = optax.chain(
optax.sgd(learning_rate=1.0),
optax.scale_by_backtracking_linesearch(
max_backtracking_steps=15,
store_grad=True
)
)
# 初始化参数和状态
params = jnp.array([1.0, 2.0, 3.0])
y = jnp.array([4, 5, 6])
opt_state = solver.init(params)
# 使用value_and_grad_from_state
value_and_grad = optax.value_and_grad_from_state(fn)
for _ in range(5):
# 计算值和梯度
value, grad = value_and_grad(params, y, state=opt_state)
# 更新参数 - 注意额外参数y的传递
updates, opt_state = solver.update(
grad, opt_state, params,
value=value, grad=grad,
value_fn=fn,
y=y
)
params = optax.apply_updates(params, updates)
关键点总结
- 当函数有额外参数时,这些参数需要在优化器的update调用中显式传递
- 回溯线搜索优化器需要访问所有额外参数,因此必须确保它们在update时可用
optax.value_and_grad_from_state
和jax.value_and_grad
都可以使用,前者更适合与Optax优化器配合使用- 参数传递的一致性非常重要,确保在计算值和梯度时与更新时使用相同的参数
通过正确理解和使用这些技术点,可以灵活地在Optax中处理各种复杂的优化场景,包括那些需要额外参数的函数优化问题。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
163
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

React Native鸿蒙化仓库
C++
199
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
951
557

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
70

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0