在Optax中使用带额外参数的函数进行优化
2025-07-07 02:42:32作者:俞予舒Fleming
Optax是Google DeepMind开发的一个基于JAX的优化库,提供了各种优化算法和工具。本文将介绍如何在Optax中使用带有额外参数的函数进行优化,特别是与回溯线搜索(backtracking linesearch)结合使用时需要注意的事项。
问题背景
在使用Optax进行优化时,我们经常会遇到目标函数需要额外参数的情况。例如,一个简单的二次函数可能需要一个额外的偏移量参数:
def fn(x, y):
return jnp.sum((x + y) ** 2)
当这样的函数与Optax的回溯线搜索优化器结合使用时,需要特别注意参数的传递方式。
解决方案
1. 使用value_and_grad_from_state
Optax提供了value_and_grad_from_state函数,它可以自动处理带有状态的梯度计算。使用时需要注意:
value_and_grad = optax.value_and_grad_from_state(fn)
2. 传递额外参数
当使用回溯线搜索优化器时,所有额外的函数参数都需要在update调用中显式传递:
updates, opt_state = solver.update(
grad, opt_state, params,
value=value, grad=grad,
value_fn=fn,
y=y # 额外参数必须在此处传递
)
3. 替代方案
虽然optax.value_and_grad_from_state很方便,但你也可以直接使用JAX原生的jax.value_and_grad函数:
value_and_grad = jax.value_and_grad(fn)
这种方法同样有效,但需要手动处理状态相关的逻辑。
完整示例
下面是一个完整的示例,展示了如何正确使用带有额外参数的函数进行优化:
import optax
import jax.numpy as jnp
def fn(x, y):
return jnp.sum((x + y) ** 2)
# 创建优化器链:SGD + 回溯线搜索
solver = optax.chain(
optax.sgd(learning_rate=1.0),
optax.scale_by_backtracking_linesearch(
max_backtracking_steps=15,
store_grad=True
)
)
# 初始化参数和状态
params = jnp.array([1.0, 2.0, 3.0])
y = jnp.array([4, 5, 6])
opt_state = solver.init(params)
# 使用value_and_grad_from_state
value_and_grad = optax.value_and_grad_from_state(fn)
for _ in range(5):
# 计算值和梯度
value, grad = value_and_grad(params, y, state=opt_state)
# 更新参数 - 注意额外参数y的传递
updates, opt_state = solver.update(
grad, opt_state, params,
value=value, grad=grad,
value_fn=fn,
y=y
)
params = optax.apply_updates(params, updates)
关键点总结
- 当函数有额外参数时,这些参数需要在优化器的update调用中显式传递
- 回溯线搜索优化器需要访问所有额外参数,因此必须确保它们在update时可用
optax.value_and_grad_from_state和jax.value_and_grad都可以使用,前者更适合与Optax优化器配合使用- 参数传递的一致性非常重要,确保在计算值和梯度时与更新时使用相同的参数
通过正确理解和使用这些技术点,可以灵活地在Optax中处理各种复杂的优化场景,包括那些需要额外参数的函数优化问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355