Fugue项目快速入门:10分钟掌握核心API
2025-06-10 21:30:45作者:滑思眉Philip
项目概述
Fugue是一个旨在简化大数据处理流程的开源项目,它通过提供统一的接口让用户能够轻松地在不同计算引擎(如Spark、Dask、Ray等)上执行分布式计算。本文将带您快速了解Fugue的核心API功能,帮助数据从业者快速上手使用。
适用人群
Fugue特别适合以下三类用户:
- 需要将Python或Pandas编写的业务逻辑扩展到更大数据集的数据科学家
- 希望通过分布式计算并行化现有代码的数据从业者
- 希望减少Spark/Dask/Ray代码维护和测试工作量的数据团队
环境准备
首先我们需要初始化一个Spark会话,后续示例会用到:
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
核心功能:transform()函数
Fugue最核心的功能是transform()函数,它能让用户轻松地将Pandas或Python代码扩展到分布式执行环境,而只需做最小的代码修改。
基础示例:模型预测
让我们通过一个机器学习预测的例子来演示:
- 首先训练一个简单的线性回归模型:
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
X = pd.DataFrame({"x_1": [1, 1, 2, 2], "x_2":[1, 2, 2, 3]})
y = np.dot(X, np.array([1, 2])) + 3
reg = LinearRegression().fit(X, y)
- 然后定义一个预测函数:
def predict(df: pd.DataFrame, model: LinearRegression) -> pd.DataFrame:
"""使用预训练模型进行预测"""
return df.assign(predicted=model.predict(df))
# 测试数据
input_df = pd.DataFrame({"x_1": [3, 4, 6, 6], "x_2":[3, 3, 6, 6]})
# 本地测试
predict(input_df, reg)
- 现在使用Fugue将这个函数扩展到Spark执行:
from fugue import transform
result = transform(
df=input_df,
using=predict,
schema="*,predicted:double",
params=dict(model=reg),
engine=spark
)
print(type(result)) # 输出: <class 'pyspark.sql.dataframe.DataFrame'>
result.show()
transform()函数参数解析
df: 输入DataFrame(可以是Pandas、Spark、Dask或Ray DataFrame)using: 要应用的Python函数schema: 输出结果的schema定义params: 传递给函数的参数字典engine: 执行引擎(Pandas、Spark、Dask或Ray)
执行引擎选择
Fugue支持多种执行引擎,使用方式非常灵活:
# 使用Spark
transform(df, fn, ..., engine=spark_session) # 输出Spark DataFrame
# 使用Dask
transform(df, fn, ..., engine=dask_client) # 输出Dask DataFrame
# 使用Ray
transform(df, fn, ..., engine="ray") # 输出Ray Dataset
如果不指定engine参数,Fugue会根据输入DataFrame的类型自动选择执行引擎:
transform(df, fn, ...) # 使用Pandas
transform(spark_df, fn, ...) # 使用Spark
transform(dask_df, fn, ...) # 使用Dask
transform(ray_df, fn, ...) # 使用Ray
本地结果返回
默认情况下,Fugue不会将分布式DataFrame转换为本地Pandas DataFrame。如果需要本地结果,可以设置as_local=True:
local_result = transform(
df=input_df,
using=predict,
schema="*,predicted:double",
params=dict(model=reg),
engine=spark,
as_local=True
)
print(type(local_result)) # 输出: <class 'pandas.core.frame.DataFrame'>
注意:对于大数据集,不建议返回本地DataFrame,可能会造成驱动程序内存不足。
类型提示与转换
Fugue通过函数类型提示来指导数据转换。前面的例子使用了pd.DataFrame作为输入输出类型,但Fugue也支持其他格式:
- 使用字典列表作为输入输出:
from typing import List, Dict, Any
def add_row2(df: List[Dict[str,Any]]) -> List[Dict[str,Any]]:
result = []
for row in df:
row["total"] = row["a"] + row["b"] + row["c"]
if row["total"] < 10:
result.append(row)
return result
- 使用列表的列表作为输入输出:
from typing import List, Iterable, Any
def add_row3(df: List[List[Any]]) -> Iterable[List[Any]]:
for row in df:
row.append(sum(row))
if row[-1] < 10:
yield row
这些函数都可以直接使用transform()函数在分布式环境中执行,Fugue会自动处理类型转换。
总结
通过本文,我们快速了解了Fugue项目的核心功能:
- 使用
transform()函数轻松将Pandas/Python代码扩展到分布式环境 - 支持多种执行引擎(Spark、Dask、Ray)的无缝切换
- 灵活的类型系统支持多种数据格式
- 简化分布式代码的测试和维护
Fugue的强大之处在于它让开发者可以专注于业务逻辑,而不必担心底层分布式计算的复杂性。对于需要处理大数据的Python开发者来说,Fugue是一个非常值得尝试的工具。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19