Fugue项目快速入门:10分钟掌握核心API
2025-06-10 03:25:33作者:滑思眉Philip
项目概述
Fugue是一个旨在简化大数据处理流程的开源项目,它通过提供统一的接口让用户能够轻松地在不同计算引擎(如Spark、Dask、Ray等)上执行分布式计算。本文将带您快速了解Fugue的核心API功能,帮助数据从业者快速上手使用。
适用人群
Fugue特别适合以下三类用户:
- 需要将Python或Pandas编写的业务逻辑扩展到更大数据集的数据科学家
- 希望通过分布式计算并行化现有代码的数据从业者
- 希望减少Spark/Dask/Ray代码维护和测试工作量的数据团队
环境准备
首先我们需要初始化一个Spark会话,后续示例会用到:
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
核心功能:transform()函数
Fugue最核心的功能是transform()函数,它能让用户轻松地将Pandas或Python代码扩展到分布式执行环境,而只需做最小的代码修改。
基础示例:模型预测
让我们通过一个机器学习预测的例子来演示:
- 首先训练一个简单的线性回归模型:
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
X = pd.DataFrame({"x_1": [1, 1, 2, 2], "x_2":[1, 2, 2, 3]})
y = np.dot(X, np.array([1, 2])) + 3
reg = LinearRegression().fit(X, y)
- 然后定义一个预测函数:
def predict(df: pd.DataFrame, model: LinearRegression) -> pd.DataFrame:
"""使用预训练模型进行预测"""
return df.assign(predicted=model.predict(df))
# 测试数据
input_df = pd.DataFrame({"x_1": [3, 4, 6, 6], "x_2":[3, 3, 6, 6]})
# 本地测试
predict(input_df, reg)
- 现在使用Fugue将这个函数扩展到Spark执行:
from fugue import transform
result = transform(
df=input_df,
using=predict,
schema="*,predicted:double",
params=dict(model=reg),
engine=spark
)
print(type(result)) # 输出: <class 'pyspark.sql.dataframe.DataFrame'>
result.show()
transform()函数参数解析
df: 输入DataFrame(可以是Pandas、Spark、Dask或Ray DataFrame)using: 要应用的Python函数schema: 输出结果的schema定义params: 传递给函数的参数字典engine: 执行引擎(Pandas、Spark、Dask或Ray)
执行引擎选择
Fugue支持多种执行引擎,使用方式非常灵活:
# 使用Spark
transform(df, fn, ..., engine=spark_session) # 输出Spark DataFrame
# 使用Dask
transform(df, fn, ..., engine=dask_client) # 输出Dask DataFrame
# 使用Ray
transform(df, fn, ..., engine="ray") # 输出Ray Dataset
如果不指定engine参数,Fugue会根据输入DataFrame的类型自动选择执行引擎:
transform(df, fn, ...) # 使用Pandas
transform(spark_df, fn, ...) # 使用Spark
transform(dask_df, fn, ...) # 使用Dask
transform(ray_df, fn, ...) # 使用Ray
本地结果返回
默认情况下,Fugue不会将分布式DataFrame转换为本地Pandas DataFrame。如果需要本地结果,可以设置as_local=True:
local_result = transform(
df=input_df,
using=predict,
schema="*,predicted:double",
params=dict(model=reg),
engine=spark,
as_local=True
)
print(type(local_result)) # 输出: <class 'pandas.core.frame.DataFrame'>
注意:对于大数据集,不建议返回本地DataFrame,可能会造成驱动程序内存不足。
类型提示与转换
Fugue通过函数类型提示来指导数据转换。前面的例子使用了pd.DataFrame作为输入输出类型,但Fugue也支持其他格式:
- 使用字典列表作为输入输出:
from typing import List, Dict, Any
def add_row2(df: List[Dict[str,Any]]) -> List[Dict[str,Any]]:
result = []
for row in df:
row["total"] = row["a"] + row["b"] + row["c"]
if row["total"] < 10:
result.append(row)
return result
- 使用列表的列表作为输入输出:
from typing import List, Iterable, Any
def add_row3(df: List[List[Any]]) -> Iterable[List[Any]]:
for row in df:
row.append(sum(row))
if row[-1] < 10:
yield row
这些函数都可以直接使用transform()函数在分布式环境中执行,Fugue会自动处理类型转换。
总结
通过本文,我们快速了解了Fugue项目的核心功能:
- 使用
transform()函数轻松将Pandas/Python代码扩展到分布式环境 - 支持多种执行引擎(Spark、Dask、Ray)的无缝切换
- 灵活的类型系统支持多种数据格式
- 简化分布式代码的测试和维护
Fugue的强大之处在于它让开发者可以专注于业务逻辑,而不必担心底层分布式计算的复杂性。对于需要处理大数据的Python开发者来说,Fugue是一个非常值得尝试的工具。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
422
3.25 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869