Fugue项目快速入门:10分钟掌握核心API
2025-06-10 03:25:33作者:滑思眉Philip
项目概述
Fugue是一个旨在简化大数据处理流程的开源项目,它通过提供统一的接口让用户能够轻松地在不同计算引擎(如Spark、Dask、Ray等)上执行分布式计算。本文将带您快速了解Fugue的核心API功能,帮助数据从业者快速上手使用。
适用人群
Fugue特别适合以下三类用户:
- 需要将Python或Pandas编写的业务逻辑扩展到更大数据集的数据科学家
- 希望通过分布式计算并行化现有代码的数据从业者
- 希望减少Spark/Dask/Ray代码维护和测试工作量的数据团队
环境准备
首先我们需要初始化一个Spark会话,后续示例会用到:
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
核心功能:transform()函数
Fugue最核心的功能是transform()函数,它能让用户轻松地将Pandas或Python代码扩展到分布式执行环境,而只需做最小的代码修改。
基础示例:模型预测
让我们通过一个机器学习预测的例子来演示:
- 首先训练一个简单的线性回归模型:
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
X = pd.DataFrame({"x_1": [1, 1, 2, 2], "x_2":[1, 2, 2, 3]})
y = np.dot(X, np.array([1, 2])) + 3
reg = LinearRegression().fit(X, y)
- 然后定义一个预测函数:
def predict(df: pd.DataFrame, model: LinearRegression) -> pd.DataFrame:
"""使用预训练模型进行预测"""
return df.assign(predicted=model.predict(df))
# 测试数据
input_df = pd.DataFrame({"x_1": [3, 4, 6, 6], "x_2":[3, 3, 6, 6]})
# 本地测试
predict(input_df, reg)
- 现在使用Fugue将这个函数扩展到Spark执行:
from fugue import transform
result = transform(
df=input_df,
using=predict,
schema="*,predicted:double",
params=dict(model=reg),
engine=spark
)
print(type(result)) # 输出: <class 'pyspark.sql.dataframe.DataFrame'>
result.show()
transform()函数参数解析
df: 输入DataFrame(可以是Pandas、Spark、Dask或Ray DataFrame)using: 要应用的Python函数schema: 输出结果的schema定义params: 传递给函数的参数字典engine: 执行引擎(Pandas、Spark、Dask或Ray)
执行引擎选择
Fugue支持多种执行引擎,使用方式非常灵活:
# 使用Spark
transform(df, fn, ..., engine=spark_session) # 输出Spark DataFrame
# 使用Dask
transform(df, fn, ..., engine=dask_client) # 输出Dask DataFrame
# 使用Ray
transform(df, fn, ..., engine="ray") # 输出Ray Dataset
如果不指定engine参数,Fugue会根据输入DataFrame的类型自动选择执行引擎:
transform(df, fn, ...) # 使用Pandas
transform(spark_df, fn, ...) # 使用Spark
transform(dask_df, fn, ...) # 使用Dask
transform(ray_df, fn, ...) # 使用Ray
本地结果返回
默认情况下,Fugue不会将分布式DataFrame转换为本地Pandas DataFrame。如果需要本地结果,可以设置as_local=True:
local_result = transform(
df=input_df,
using=predict,
schema="*,predicted:double",
params=dict(model=reg),
engine=spark,
as_local=True
)
print(type(local_result)) # 输出: <class 'pandas.core.frame.DataFrame'>
注意:对于大数据集,不建议返回本地DataFrame,可能会造成驱动程序内存不足。
类型提示与转换
Fugue通过函数类型提示来指导数据转换。前面的例子使用了pd.DataFrame作为输入输出类型,但Fugue也支持其他格式:
- 使用字典列表作为输入输出:
from typing import List, Dict, Any
def add_row2(df: List[Dict[str,Any]]) -> List[Dict[str,Any]]:
result = []
for row in df:
row["total"] = row["a"] + row["b"] + row["c"]
if row["total"] < 10:
result.append(row)
return result
- 使用列表的列表作为输入输出:
from typing import List, Iterable, Any
def add_row3(df: List[List[Any]]) -> Iterable[List[Any]]:
for row in df:
row.append(sum(row))
if row[-1] < 10:
yield row
这些函数都可以直接使用transform()函数在分布式环境中执行,Fugue会自动处理类型转换。
总结
通过本文,我们快速了解了Fugue项目的核心功能:
- 使用
transform()函数轻松将Pandas/Python代码扩展到分布式环境 - 支持多种执行引擎(Spark、Dask、Ray)的无缝切换
- 灵活的类型系统支持多种数据格式
- 简化分布式代码的测试和维护
Fugue的强大之处在于它让开发者可以专注于业务逻辑,而不必担心底层分布式计算的复杂性。对于需要处理大数据的Python开发者来说,Fugue是一个非常值得尝试的工具。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
628
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
74
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K