Fugue项目快速入门:10分钟掌握核心API
2025-06-10 21:49:23作者:滑思眉Philip
项目概述
Fugue是一个旨在简化大数据处理流程的开源项目,它通过提供统一的接口让用户能够轻松地在不同计算引擎(如Spark、Dask、Ray等)上执行分布式计算。本文将带您快速了解Fugue的核心API功能,帮助数据从业者快速上手使用。
适用人群
Fugue特别适合以下三类用户:
- 需要将Python或Pandas编写的业务逻辑扩展到更大数据集的数据科学家
- 希望通过分布式计算并行化现有代码的数据从业者
- 希望减少Spark/Dask/Ray代码维护和测试工作量的数据团队
环境准备
首先我们需要初始化一个Spark会话,后续示例会用到:
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
核心功能:transform()函数
Fugue最核心的功能是transform()
函数,它能让用户轻松地将Pandas或Python代码扩展到分布式执行环境,而只需做最小的代码修改。
基础示例:模型预测
让我们通过一个机器学习预测的例子来演示:
- 首先训练一个简单的线性回归模型:
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
X = pd.DataFrame({"x_1": [1, 1, 2, 2], "x_2":[1, 2, 2, 3]})
y = np.dot(X, np.array([1, 2])) + 3
reg = LinearRegression().fit(X, y)
- 然后定义一个预测函数:
def predict(df: pd.DataFrame, model: LinearRegression) -> pd.DataFrame:
"""使用预训练模型进行预测"""
return df.assign(predicted=model.predict(df))
# 测试数据
input_df = pd.DataFrame({"x_1": [3, 4, 6, 6], "x_2":[3, 3, 6, 6]})
# 本地测试
predict(input_df, reg)
- 现在使用Fugue将这个函数扩展到Spark执行:
from fugue import transform
result = transform(
df=input_df,
using=predict,
schema="*,predicted:double",
params=dict(model=reg),
engine=spark
)
print(type(result)) # 输出: <class 'pyspark.sql.dataframe.DataFrame'>
result.show()
transform()函数参数解析
df
: 输入DataFrame(可以是Pandas、Spark、Dask或Ray DataFrame)using
: 要应用的Python函数schema
: 输出结果的schema定义params
: 传递给函数的参数字典engine
: 执行引擎(Pandas、Spark、Dask或Ray)
执行引擎选择
Fugue支持多种执行引擎,使用方式非常灵活:
# 使用Spark
transform(df, fn, ..., engine=spark_session) # 输出Spark DataFrame
# 使用Dask
transform(df, fn, ..., engine=dask_client) # 输出Dask DataFrame
# 使用Ray
transform(df, fn, ..., engine="ray") # 输出Ray Dataset
如果不指定engine参数,Fugue会根据输入DataFrame的类型自动选择执行引擎:
transform(df, fn, ...) # 使用Pandas
transform(spark_df, fn, ...) # 使用Spark
transform(dask_df, fn, ...) # 使用Dask
transform(ray_df, fn, ...) # 使用Ray
本地结果返回
默认情况下,Fugue不会将分布式DataFrame转换为本地Pandas DataFrame。如果需要本地结果,可以设置as_local=True
:
local_result = transform(
df=input_df,
using=predict,
schema="*,predicted:double",
params=dict(model=reg),
engine=spark,
as_local=True
)
print(type(local_result)) # 输出: <class 'pandas.core.frame.DataFrame'>
注意:对于大数据集,不建议返回本地DataFrame,可能会造成驱动程序内存不足。
类型提示与转换
Fugue通过函数类型提示来指导数据转换。前面的例子使用了pd.DataFrame
作为输入输出类型,但Fugue也支持其他格式:
- 使用字典列表作为输入输出:
from typing import List, Dict, Any
def add_row2(df: List[Dict[str,Any]]) -> List[Dict[str,Any]]:
result = []
for row in df:
row["total"] = row["a"] + row["b"] + row["c"]
if row["total"] < 10:
result.append(row)
return result
- 使用列表的列表作为输入输出:
from typing import List, Iterable, Any
def add_row3(df: List[List[Any]]) -> Iterable[List[Any]]:
for row in df:
row.append(sum(row))
if row[-1] < 10:
yield row
这些函数都可以直接使用transform()
函数在分布式环境中执行,Fugue会自动处理类型转换。
总结
通过本文,我们快速了解了Fugue项目的核心功能:
- 使用
transform()
函数轻松将Pandas/Python代码扩展到分布式环境 - 支持多种执行引擎(Spark、Dask、Ray)的无缝切换
- 灵活的类型系统支持多种数据格式
- 简化分布式代码的测试和维护
Fugue的强大之处在于它让开发者可以专注于业务逻辑,而不必担心底层分布式计算的复杂性。对于需要处理大数据的Python开发者来说,Fugue是一个非常值得尝试的工具。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0134AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 WebVideoDownloader:高效网页视频抓取工具全面使用指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.31 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

React Native鸿蒙化仓库
JavaScript
216
290

暂无简介
Dart
532
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
992
587

Ascend Extension for PyTorch
Python
74
103

仓颉编程语言测试用例。
Cangjie
34
61

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401