Fugue项目快速入门:10分钟掌握核心API
2025-06-10 11:08:48作者:滑思眉Philip
项目概述
Fugue是一个旨在简化大数据处理流程的开源项目,它通过提供统一的接口让用户能够轻松地在不同计算引擎(如Spark、Dask、Ray等)上执行分布式计算。本文将带您快速了解Fugue的核心API功能,帮助数据从业者快速上手使用。
适用人群
Fugue特别适合以下三类用户:
- 需要将Python或Pandas编写的业务逻辑扩展到更大数据集的数据科学家
- 希望通过分布式计算并行化现有代码的数据从业者
- 希望减少Spark/Dask/Ray代码维护和测试工作量的数据团队
环境准备
首先我们需要初始化一个Spark会话,后续示例会用到:
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
核心功能:transform()函数
Fugue最核心的功能是transform()
函数,它能让用户轻松地将Pandas或Python代码扩展到分布式执行环境,而只需做最小的代码修改。
基础示例:模型预测
让我们通过一个机器学习预测的例子来演示:
- 首先训练一个简单的线性回归模型:
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
X = pd.DataFrame({"x_1": [1, 1, 2, 2], "x_2":[1, 2, 2, 3]})
y = np.dot(X, np.array([1, 2])) + 3
reg = LinearRegression().fit(X, y)
- 然后定义一个预测函数:
def predict(df: pd.DataFrame, model: LinearRegression) -> pd.DataFrame:
"""使用预训练模型进行预测"""
return df.assign(predicted=model.predict(df))
# 测试数据
input_df = pd.DataFrame({"x_1": [3, 4, 6, 6], "x_2":[3, 3, 6, 6]})
# 本地测试
predict(input_df, reg)
- 现在使用Fugue将这个函数扩展到Spark执行:
from fugue import transform
result = transform(
df=input_df,
using=predict,
schema="*,predicted:double",
params=dict(model=reg),
engine=spark
)
print(type(result)) # 输出: <class 'pyspark.sql.dataframe.DataFrame'>
result.show()
transform()函数参数解析
df
: 输入DataFrame(可以是Pandas、Spark、Dask或Ray DataFrame)using
: 要应用的Python函数schema
: 输出结果的schema定义params
: 传递给函数的参数字典engine
: 执行引擎(Pandas、Spark、Dask或Ray)
执行引擎选择
Fugue支持多种执行引擎,使用方式非常灵活:
# 使用Spark
transform(df, fn, ..., engine=spark_session) # 输出Spark DataFrame
# 使用Dask
transform(df, fn, ..., engine=dask_client) # 输出Dask DataFrame
# 使用Ray
transform(df, fn, ..., engine="ray") # 输出Ray Dataset
如果不指定engine参数,Fugue会根据输入DataFrame的类型自动选择执行引擎:
transform(df, fn, ...) # 使用Pandas
transform(spark_df, fn, ...) # 使用Spark
transform(dask_df, fn, ...) # 使用Dask
transform(ray_df, fn, ...) # 使用Ray
本地结果返回
默认情况下,Fugue不会将分布式DataFrame转换为本地Pandas DataFrame。如果需要本地结果,可以设置as_local=True
:
local_result = transform(
df=input_df,
using=predict,
schema="*,predicted:double",
params=dict(model=reg),
engine=spark,
as_local=True
)
print(type(local_result)) # 输出: <class 'pandas.core.frame.DataFrame'>
注意:对于大数据集,不建议返回本地DataFrame,可能会造成驱动程序内存不足。
类型提示与转换
Fugue通过函数类型提示来指导数据转换。前面的例子使用了pd.DataFrame
作为输入输出类型,但Fugue也支持其他格式:
- 使用字典列表作为输入输出:
from typing import List, Dict, Any
def add_row2(df: List[Dict[str,Any]]) -> List[Dict[str,Any]]:
result = []
for row in df:
row["total"] = row["a"] + row["b"] + row["c"]
if row["total"] < 10:
result.append(row)
return result
- 使用列表的列表作为输入输出:
from typing import List, Iterable, Any
def add_row3(df: List[List[Any]]) -> Iterable[List[Any]]:
for row in df:
row.append(sum(row))
if row[-1] < 10:
yield row
这些函数都可以直接使用transform()
函数在分布式环境中执行,Fugue会自动处理类型转换。
总结
通过本文,我们快速了解了Fugue项目的核心功能:
- 使用
transform()
函数轻松将Pandas/Python代码扩展到分布式环境 - 支持多种执行引擎(Spark、Dask、Ray)的无缝切换
- 灵活的类型系统支持多种数据格式
- 简化分布式代码的测试和维护
Fugue的强大之处在于它让开发者可以专注于业务逻辑,而不必担心底层分布式计算的复杂性。对于需要处理大数据的Python开发者来说,Fugue是一个非常值得尝试的工具。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp博客页面工作坊中的断言方法优化建议4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp论坛排行榜项目中的错误日志规范要求7 freeCodeCamp音乐播放器项目中的函数调用问题解析8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析10 freeCodeCamp课程页面空白问题的技术分析与解决方案
最新内容推荐
PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
198
279

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
535
62

Ascend Extension for PyTorch
Python
50
81

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
556

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1 K
397

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
385
19

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191