Fugue项目分布式计算入门指南
2025-06-10 15:49:03作者:瞿蔚英Wynne
分布式计算概述
在数据处理领域,当数据量超过单机处理能力时,分布式计算成为必不可少的解决方案。Fugue作为一个分布式计算框架,提供了简单易用的接口来处理大规模数据。本文将介绍Fugue中几个关键的分布式计算概念和技术,帮助开发者高效地处理分布式环境下的数据。
数据分区与预排序
分区概念
在分布式环境中,数据被分散存储在多台机器上。合理的数据分区策略对计算性能至关重要。Fugue允许用户在执行操作时控制分区方案,确保相关数据被合理分布。
例如,计算每个组的中间值时,需要将同一组的所有数据放在同一台机器上处理。Fugue通过partition参数实现这一需求。
实际应用示例
import fugue.api as fa
import pandas as pd
df = pd.DataFrame({'col1':[1,1,1,2,2,2], 'col2':[1,4,5,7,4,2]})
fa.take(df, 1, presort="col2 desc", partition={"by":['col1']})
这段代码展示了如何:
- 按col1列进行分区
- 在每个分区内按col2降序排序
- 从每个分区取第一条记录(即每个col1组中col2的最大值)
预排序的作用
预排序表达式col2 desc指定了分区内数据的排序方式,这对于获取极值或执行窗口函数等操作非常有用。
持久化与广播机制
持久化(Persist)
在分布式计算中,持久化是指将DataFrame保留在内存中以避免重复计算。分布式框架通常需要显式调用persist()来指定哪些DataFrame需要保持,否则它们可能会被重复计算。
fa.persist(df, engine="spark")
广播(Broadcast)
广播是将较小的DataFrame分发到集群所有工作节点的机制。如果不使用广播,这些小DataFrame会在每次需要时被重复发送到工作节点,造成网络开销。
fa.broadcast(df, engine="spark")
广播特别适合以下场景:
- 小表与大表连接时
- 需要频繁访问的参考数据
- 配置参数或字典数据
重分区策略
重分区的作用
Fugue支持对分布式DataFrame进行重分区操作,这可以用于:
- 增加分区数量以提高并行度
- 减少分区数量以降低管理开销
- 改变分区策略以适应不同计算需求
使用示例
fa.repartition(df, {"num": 100}, engine="spark")
此代码将DataFrame重新分区为100个分区。合理的分区数量应考虑:
- 集群的计算资源
- 数据规模
- 作业特性
分区策略选择
Fugue提供多种分区策略,开发者可以根据具体场景选择:
- 哈希分区:均匀分布数据
- 范围分区:适合有序数据
- 自定义分区:满足特殊业务需求
性能优化建议
- 合理设置分区数:分区数应与集群核心数保持合理比例
- 适时持久化:对需要多次使用的中间结果进行持久化
- 善用广播:对小数据集优先考虑广播
- 预排序优化:对需要排序的操作提前规划排序策略
- 监控分区大小:避免数据倾斜导致某些节点负载过高
通过掌握这些Fugue的分布式计算核心概念,开发者可以更高效地处理大规模数据,充分发挥分布式计算的优势。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134