Fugue项目分布式计算入门指南
2025-06-10 03:01:55作者:瞿蔚英Wynne
分布式计算概述
在数据处理领域,当数据量超过单机处理能力时,分布式计算成为必不可少的解决方案。Fugue作为一个分布式计算框架,提供了简单易用的接口来处理大规模数据。本文将介绍Fugue中几个关键的分布式计算概念和技术,帮助开发者高效地处理分布式环境下的数据。
数据分区与预排序
分区概念
在分布式环境中,数据被分散存储在多台机器上。合理的数据分区策略对计算性能至关重要。Fugue允许用户在执行操作时控制分区方案,确保相关数据被合理分布。
例如,计算每个组的中间值时,需要将同一组的所有数据放在同一台机器上处理。Fugue通过partition参数实现这一需求。
实际应用示例
import fugue.api as fa
import pandas as pd
df = pd.DataFrame({'col1':[1,1,1,2,2,2], 'col2':[1,4,5,7,4,2]})
fa.take(df, 1, presort="col2 desc", partition={"by":['col1']})
这段代码展示了如何:
- 按col1列进行分区
- 在每个分区内按col2降序排序
- 从每个分区取第一条记录(即每个col1组中col2的最大值)
预排序的作用
预排序表达式col2 desc指定了分区内数据的排序方式,这对于获取极值或执行窗口函数等操作非常有用。
持久化与广播机制
持久化(Persist)
在分布式计算中,持久化是指将DataFrame保留在内存中以避免重复计算。分布式框架通常需要显式调用persist()来指定哪些DataFrame需要保持,否则它们可能会被重复计算。
fa.persist(df, engine="spark")
广播(Broadcast)
广播是将较小的DataFrame分发到集群所有工作节点的机制。如果不使用广播,这些小DataFrame会在每次需要时被重复发送到工作节点,造成网络开销。
fa.broadcast(df, engine="spark")
广播特别适合以下场景:
- 小表与大表连接时
- 需要频繁访问的参考数据
- 配置参数或字典数据
重分区策略
重分区的作用
Fugue支持对分布式DataFrame进行重分区操作,这可以用于:
- 增加分区数量以提高并行度
- 减少分区数量以降低管理开销
- 改变分区策略以适应不同计算需求
使用示例
fa.repartition(df, {"num": 100}, engine="spark")
此代码将DataFrame重新分区为100个分区。合理的分区数量应考虑:
- 集群的计算资源
- 数据规模
- 作业特性
分区策略选择
Fugue提供多种分区策略,开发者可以根据具体场景选择:
- 哈希分区:均匀分布数据
- 范围分区:适合有序数据
- 自定义分区:满足特殊业务需求
性能优化建议
- 合理设置分区数:分区数应与集群核心数保持合理比例
- 适时持久化:对需要多次使用的中间结果进行持久化
- 善用广播:对小数据集优先考虑广播
- 预排序优化:对需要排序的操作提前规划排序策略
- 监控分区大小:避免数据倾斜导致某些节点负载过高
通过掌握这些Fugue的分布式计算核心概念,开发者可以更高效地处理大规模数据,充分发挥分布式计算的优势。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
146
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19