LyCORIS项目中DoRA训练时的设备不匹配问题解析
2025-07-02 23:23:36作者:宣利权Counsellor
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
问题背景
在使用LyCORIS项目进行DoRA(Diffusion-based Latent Representation Alignment)训练时,用户遇到了一个常见的PyTorch设备不匹配错误。该错误表明在计算过程中,部分张量位于CPU上,而另一部分位于CUDA设备上,导致无法执行运算。
错误分析
错误发生在lycoris/modules/locon.py文件的第207行,具体是在apply_weight_decompose方法中。当尝试执行权重分解操作时,系统检测到参与运算的张量分布在不同的设备上:一个是CUDA设备(cuda:0),另一个是CPU。
这种设备不匹配问题在PyTorch中很常见,通常发生在:
- 模型参数已转移到GPU,但某些中间计算结果仍留在CPU上
- 输入数据与模型参数不在同一设备上
- 自定义操作中未正确处理设备转移
解决方案
根据社区反馈,该问题可以通过以下方式解决:
-
显式设备管理:确保所有参与运算的张量都位于同一设备上。可以在计算前使用
.to(device)方法统一设备。 -
权重归一化处理:在DoRA的权重分解计算中,需要特别注意权重归一化步骤的设备一致性。确保权重和归一化系数都位于GPU上。
-
版本兼容性检查:确认使用的LyCORIS版本(2.2.0.post3)是否完全支持当前的训练配置。
技术实现建议
对于开发者而言,在实现类似DoRA这样的训练方法时,建议:
- 在关键计算步骤前添加设备检查
- 实现自动设备转移机制
- 在文档中明确说明硬件要求和使用条件
- 对输入数据进行设备验证
总结
设备不匹配问题是深度学习训练中的常见挑战,特别是在使用自定义训练方法和复杂模型架构时。LyCORIS项目中的DoRA训练方法通过权重分解实现高效微调,但在实现细节上需要特别注意设备一致性。开发者在使用时应确保环境配置正确,并关注社区提供的最新解决方案。
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248