LyCORIS项目中DoRA权重分解轴差异的技术解析
2025-07-02 22:38:05作者:龚格成
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
背景介绍
在深度学习模型微调领域,LoRA(Low-Rank Adaptation)及其变种DoRA(Weight-Decomposed Low-Rank Adaptation)是两种重要的参数高效微调方法。近期在LyCORIS项目中发现其DoRA实现与PEFT库中的实现存在一个关键差异:权重分解的轴向选择不同。
问题本质
DoRA方法的核心思想是将预训练权重矩阵W分解为幅度(m)和方向(V)两部分:W = m·V/||V||_F。其中关键的技术细节在于幅度向量m的维度选择。
在LyCORIS实现中:
- 对于一个Linear(784, 2048)层,DoRA幅度向量形状为[1, 784](输入维度)
- 而在PEFT实现中,相同层的幅度向量形状为[2048](输出维度)
技术分析
根据原始DoRA论文的数学表示:
- 权重矩阵W的维度为d×k(输出×输入)
- LoRA更新项BA中,B维度为d×r,A维度为r×k
- 论文中的分解操作似乎针对输入维度k
然而,从作者参考实现代码来看:
- 幅度向量确实采用了输出维度d
- PEFT实现与参考代码一致
实现差异的影响
这种轴向选择的差异会导致:
- 模型参数空间不同
- 训练动态可能有所变化
- 检查点文件不兼容
虽然理论上两种实现都可能有效,但会带来以下实际问题:
- 无法在LyCORIS和PEFT之间直接迁移DoRA模型
- 社区可能出现混淆
解决方案与建议
LyCORIS项目已采取以下措施:
- 保持现有实现作为默认选项(输入维度分解)
- 在3.1.1版本新增wd_on_output参数,允许用户选择输出维度分解
- 确保向后兼容性
对于使用者建议:
- 明确所用库的DoRA实现方式
- 训练和推理使用相同实现
- 需要迁移模型时注意维度转换
技术思考
这种实现差异反映了深度学习实践中常见的现象:
- 论文数学描述与实际代码实现可能存在差异
- 不同框架对矩阵维度的处理约定不同
- 早期实现决策会影响长期兼容性
从优化角度看,两种分解方式各有特点:
- 输入维度分解可能更关注特征选择
- 输出维度分解可能更关注神经元激活模式
结论
LyCORIS与PEFT在DoRA实现上的轴向差异是一个值得注意的技术细节。虽然两种实现都可能有效,但使用者需要了解这一差异以避免兼容性问题。LyCORIS项目通过提供配置选项来支持两种模式,既保持了兼容性又提供了灵活性。这一案例也提醒我们,在复现论文方法时需要仔细核对理论描述与参考实现。
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp博客页面工作坊中的断言方法优化建议7 freeCodeCamp论坛排行榜项目中的错误日志规范要求8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp音乐播放器项目中的函数调用问题解析10 freeCodeCamp课程页面空白问题的技术分析与解决方案
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
238
2.36 K
仓颉编程语言运行时与标准库。
Cangjie
122
96
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
85
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
77
110
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
26