LyCORIS项目中DoRA权重分解轴差异的技术解析
2025-07-02 15:38:02作者:龚格成
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
背景介绍
在深度学习模型微调领域,LoRA(Low-Rank Adaptation)及其变种DoRA(Weight-Decomposed Low-Rank Adaptation)是两种重要的参数高效微调方法。近期在LyCORIS项目中发现其DoRA实现与PEFT库中的实现存在一个关键差异:权重分解的轴向选择不同。
问题本质
DoRA方法的核心思想是将预训练权重矩阵W分解为幅度(m)和方向(V)两部分:W = m·V/||V||_F。其中关键的技术细节在于幅度向量m的维度选择。
在LyCORIS实现中:
- 对于一个Linear(784, 2048)层,DoRA幅度向量形状为[1, 784](输入维度)
- 而在PEFT实现中,相同层的幅度向量形状为[2048](输出维度)
技术分析
根据原始DoRA论文的数学表示:
- 权重矩阵W的维度为d×k(输出×输入)
- LoRA更新项BA中,B维度为d×r,A维度为r×k
- 论文中的分解操作似乎针对输入维度k
然而,从作者参考实现代码来看:
- 幅度向量确实采用了输出维度d
- PEFT实现与参考代码一致
实现差异的影响
这种轴向选择的差异会导致:
- 模型参数空间不同
- 训练动态可能有所变化
- 检查点文件不兼容
虽然理论上两种实现都可能有效,但会带来以下实际问题:
- 无法在LyCORIS和PEFT之间直接迁移DoRA模型
- 社区可能出现混淆
解决方案与建议
LyCORIS项目已采取以下措施:
- 保持现有实现作为默认选项(输入维度分解)
- 在3.1.1版本新增wd_on_output参数,允许用户选择输出维度分解
- 确保向后兼容性
对于使用者建议:
- 明确所用库的DoRA实现方式
- 训练和推理使用相同实现
- 需要迁移模型时注意维度转换
技术思考
这种实现差异反映了深度学习实践中常见的现象:
- 论文数学描述与实际代码实现可能存在差异
- 不同框架对矩阵维度的处理约定不同
- 早期实现决策会影响长期兼容性
从优化角度看,两种分解方式各有特点:
- 输入维度分解可能更关注特征选择
- 输出维度分解可能更关注神经元激活模式
结论
LyCORIS与PEFT在DoRA实现上的轴向差异是一个值得注意的技术细节。虽然两种实现都可能有效,但使用者需要了解这一差异以避免兼容性问题。LyCORIS项目通过提供配置选项来支持两种模式,既保持了兼容性又提供了灵活性。这一案例也提醒我们,在复现论文方法时需要仔细核对理论描述与参考实现。
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134