LyCORIS项目中DoRA权重归一化与缩放参数的技术解析
2025-07-02 17:40:33作者:郦嵘贵Just
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
背景介绍
在LyCORIS项目中,DoRA(Weight-Decomposed Low-Rank Adaptation)是一种改进的LoRA(Low-Rank Adaptation)技术,它通过对模型权重进行分解和归一化处理来提升微调效果。近期在项目社区中,关于DoRA实现中缩放参数(alpha)的应用位置引发了一些技术讨论。
技术争议核心
争议的核心在于缩放参数(alpha)应该在DoRA权重归一化的哪个阶段应用。原始实现中存在两种不同的处理方式:
-
A1111实现方式:在权重归一化后应用缩放参数,这使得模型作者能够通过alpha参数将DoRA的输出范围标准化到[-1,1]区间。
-
ComfyUI实现方式:将alpha参数视为BA矩阵的一部分,在权重归一化前应用。
这两种实现方式导致了模型在不同框架间的兼容性问题,特别是当模型作者尝试创建跨平台兼容的DoRA模型时。
技术实现分析
在LyCORIS项目的代码中,DoRA的核心计算逻辑涉及以下几个关键步骤:
- 权重分解:将原始权重矩阵分解为幅度和方向分量
- 归一化处理:对分解后的权重进行归一化
- 缩放应用:通过alpha参数控制最终输出的缩放程度
原始实现中,缩放参数的应用位置影响了模型的几个关键特性:
- 当alpha应用于归一化前时,改变alpha值会改变权重矩阵本身,即使scale=0时也会产生影响
- 当alpha应用于归一化后时,可以保持权重矩阵的归一化特性,仅调整输出幅度
解决方案演进
经过技术讨论和代码审查,项目维护者确认了以下技术要点:
- 原始论文中确实没有明确提及alpha参数的使用方式
- 训练过程中multiplier默认为1,因此当前实现不会影响训练结果
- 最终确定在权重分解后应用缩放参数更为合理
项目已在开发分支中修复了这一问题,确保multiplier在权重分解后正确应用,同时保持了与原始论文理论的一致性。
对模型作者的影响
这一技术调整对DoRA模型作者有几个重要影响:
- 模型兼容性:确保模型在不同实现框架间的行为一致性
- 参数控制:保持了alpha参数作为输出幅度控制器的功能
- 归一化保证:权重归一化后的特性不会因alpha调整而破坏
技术启示
这一技术讨论揭示了深度学习实现中几个值得注意的方面:
- 论文理论实现与工程实践之间可能存在差异
- 框架间的实现一致性对模型部署至关重要
- 参数的应用顺序可能显著影响模型行为
LyCORIS项目通过这一技术调整,既保持了理论正确性,又解决了实际应用中的兼容性问题,为DoRA技术的广泛应用奠定了更好的基础。
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp博客页面工作坊中的断言方法优化建议7 freeCodeCamp论坛排行榜项目中的错误日志规范要求8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp音乐播放器项目中的函数调用问题解析10 freeCodeCamp课程页面空白问题的技术分析与解决方案
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
238
2.36 K
仓颉编程语言运行时与标准库。
Cangjie
122
96
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
85
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
77
110
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
998
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
115
LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
26