LM-Evaluation-Harness项目中的Tokenizer远程代码信任问题解析
在评估开源语言模型时,研究人员经常使用LM-Evaluation-Harness这一强大的评估框架。近期,有开发者在评估internlm2_5-1_8b-chat模型时遇到了一个典型的技术问题,这个问题涉及到Hugging Face Transformers库中的安全机制。
当使用本地推理服务器(vllm)加载internlm2_5-1_8b-chat模型的tokenizer时,系统会提示需要用户确认是否信任远程代码。这是因为该模型的tokenizer实现包含自定义代码,而Transformers库出于安全考虑默认不自动执行这些代码。在交互式环境中,系统会等待用户输入(y/N),但在非交互式环境(如脚本或批处理作业)中,这会导致EOFError异常。
问题的核心在于LM-Evaluation-Harness的api_models.py文件中加载tokenizer的方式。当前实现没有考虑传递trust_remote_code参数,而这个参数对于加载包含自定义代码的模型是必要的。特别是在使用API模式进行评估时,这个问题会中断整个评估流程。
技术解决方案相对直接:需要在加载tokenizer时显式传递trust_remote_code参数。这个参数应该与模型的其他参数保持一致,如果用户在模型参数中指定了trust_remote_code=True,那么加载tokenizer时也应该采用相同的设置。
这个问题反映了在模型评估工具开发中需要考虑的几个重要方面:
- 安全性:Hugging Face的信任机制是为了防止潜在恶意代码的执行
- 自动化:评估工具需要适应非交互式环境
- 一致性:模型加载和tokenizer加载的参数应该保持一致
对于开发者来说,理解这个问题有助于更好地处理类似包含自定义组件的模型评估场景。同时,这也提醒我们在构建模型评估流水线时,需要充分考虑各种运行环境和安全限制。
该问题的修复已经通过PR提交,允许用户通过model_args传递trust_remote_code参数,从而解决了自动化评估中的这一障碍。这个改进使得LM-Evaluation-Harness能够更顺畅地评估那些包含自定义tokenizer实现的模型,进一步提升了框架的兼容性和实用性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息012Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









