jsPsych项目发布:html-audio-response插件2.1.0版本解析
jsPsych是一个广泛应用于心理学实验的JavaScript库,它允许研究人员在网页浏览器中创建和运行行为实验。该库通过模块化的插件系统提供了丰富的实验范式支持,使心理学实验的编程变得更加高效和标准化。
本次发布的2.1.0版本是html-audio-response插件的一个重要更新。这个插件专门用于收集被试对音频刺激的响应,是听觉实验研究中的重要工具。新版本主要增加了对学术引用的支持,体现了jsPsych项目对科研规范性的重视。
核心更新内容
学术引用功能增强
2.1.0版本最显著的改进是为所有插件和扩展添加了标准化的引用信息。这一功能通过以下方式实现:
-
内置引用属性:每个插件现在都包含一个
citations
属性,存储了该插件的APA和BibTeX两种格式的引用信息。 -
引用生成函数:jsPsych主包新增了
getCitations()
函数,研究人员可以通过传入插件名称数组和引用格式字符串,方便地生成所需的引用列表。 -
自动化引用生成:构建过程中,系统会自动从插件目录下的.cff文件中提取引用信息,确保引用数据的准确性和一致性。
技术实现细节
引用数据存储结构
每个插件的info字段现在包含标准化的引用信息,采用以下结构:
info: {
// ...其他原有字段
citations: {
apa: "标准APA格式的引用字符串",
bibtex: "标准BibTeX格式的引用字符串"
}
}
引用生成函数使用示例
研究人员可以通过简单调用获取引用:
// 获取jsPsych主库和html-audio-response插件的APA格式引用
const citations = jsPsych.getCitations(['jspsych', 'html-audio-response'], 'apa');
该函数会自动将jsPsych主库的引用排在首位,随后是按传入顺序排列的插件引用,各引用间用换行符分隔。
对研究实践的影响
这一更新为心理学实验研究带来了几个重要优势:
-
规范化引用:确保研究中使用的工具得到恰当引用,符合学术伦理要求。
-
引用便利性:研究人员不再需要手动查找和格式化插件引用,减少了准备工作量。
-
一致性保证:自动化生成的引用格式统一,避免了人为错误。
-
透明度提升:实验代码中明确包含了所用工具的版本和引用信息,提高了研究的可重复性。
开发者建议
对于基于jsPsych进行实验开发的研究人员:
-
更新到新版本后,可以方便地在实验介绍或方法部分加入标准化的工具引用。
-
建议在实验代码中保留getCitations()的输出,作为实验材料的一部分。
-
对于自行开发的插件,可以参照相同模式添加.cff文件,实现引用信息的自动化管理。
这一更新体现了jsPsych项目对科研规范性的持续关注,使得基于浏览器的心理学实验更加符合学术出版的标准要求,同时也为研究人员提供了更完善的工作流程支持。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









