jsPsych插件canvas-button-response 2.1.0版本发布:增强学术引用功能
jsPsych是一个用于构建行为实验的JavaScript框架,广泛应用于心理学、神经科学等领域的研究。它提供了丰富的插件系统,允许研究人员快速构建各种实验范式。其中canvas-button-response插件是一个重要组件,它允许在Canvas画布上呈现刺激并收集被试的按钮响应。
核心更新内容
本次2.1.0版本的canvas-button-response插件主要引入了学术引用功能的增强:
-
标准化引用信息:所有插件和扩展现在都包含标准化的引用信息字段,支持APA和BibTeX两种主流引用格式。
-
自动化引用生成:在构建过程中,系统会自动从插件根目录下的.cff文件中提取引用信息,并生成标准化的引用格式。
-
便捷引用功能:jsPsych核心包新增了getCitations()方法,研究人员可以通过简单的函数调用获取指定插件集合的格式化引用字符串。
技术实现细节
引用信息存储结构
每个插件现在都包含一个info字段,其中新增了citations属性。这个属性是一个对象,包含两种标准化的引用格式:
citations: {
apa: "标准APA格式的引用字符串",
bibtex: "标准BibTeX格式的引用字符串"
}
getCitations()方法
jsPsych核心包新增的getCitations()方法提供了便捷的引用生成功能。该方法接受两个参数:
- 插件/扩展名称数组:指定需要生成引用的插件集合
- 引用格式字符串:'apa'或'bibtex',指定输出格式
方法会返回一个字符串,其中包含所有指定插件的引用信息,每个引用用换行符分隔。值得注意的是,输出中总是首先包含jsPsych核心库的引用。
构建流程改进
在构建过程中,系统会自动扫描每个插件目录下的.cff文件(Citation File Format)。如果存在,系统会解析该文件并自动生成标准化的引用信息,将其整合到最终构建的插件代码中。
对研究实践的影响
这一更新为学术研究带来了几个重要优势:
-
引用标准化:确保研究中使用的工具得到正确引用,符合学术规范。
-
效率提升:研究人员不再需要手动查找和格式化每个插件的引用信息,节省了大量时间。
-
完整性保证:自动化的引用生成减少了遗漏重要引用的可能性。
-
格式统一:支持两种主流引用格式,满足不同期刊和机构的要求。
使用示例
研究人员现在可以这样获取实验中使用插件的引用信息:
// 获取canvas-button-response插件和其他插件的APA格式引用
const citations = jsPsych.getCitations(
['canvas-button-response', 'other-plugin'],
'apa'
);
// 输出结果将包含:
// 1. jsPsych核心库引用
// 2. canvas-button-response插件引用
// 3. other-plugin插件引用
console.log(citations);
总结
jsPsych canvas-button-response插件2.1.0版本的发布,特别是其增强的引用功能,体现了该项目对学术严谨性的重视。这一更新不仅简化了研究人员的文献引用工作流程,也提升了研究成果的可追溯性和可重复性。对于使用jsPsych进行行为实验研究的人员来说,这一改进将显著提高工作效率和引用准确性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00