Async-profiler中wall clock采样模式的优化实践
2025-05-28 07:36:23作者:薛曦旖Francesca
在Java性能分析领域,async-profiler作为一款低开销的采样分析工具,其wall clock采样模式(-e wall)一直是分析线程整体行为的重要功能。然而,当面对现代Java应用中常见的数千线程场景时,传统的实现方式会带来显著的性能开销。本文将深入探讨这一问题的技术背景、优化思路及实现方案。
传统实现的问题本质
传统wall clock采样模式通过专用线程以固定间隔(如100ms)向所有应用线程发送信号进行采样。这种设计在以下场景会产生明显问题:
- 信号风暴问题:假设应用有1000个线程,采样间隔100ms,意味着每秒产生10,000次信号中断
- 无效采样问题:线程池中大部分空闲线程会被反复采样,但它们的堆栈几乎不变
- 副作用问题:信号会唤醒本应休眠的线程,导致不必要的内核调度开销
优化方案的技术实现
核心优化思路是识别并跳过空闲线程的重复采样,具体通过以下机制实现:
-
线程状态智能判断:
- 采样IDLE状态线程时记录其CPU使用量
- 后续采样时比较CPU使用量变化
- 无变化则判定线程仍处于相同状态点
-
采样结果批量记录:
- 引入新的JFR事件类型
profiler.WallClockSample - 包含原始
jdk.ExecutionSample所有字段 - 新增
samples字段记录跳过的采样次数 - 例如:将500次相同采样合并为1次真实采样+499次计数
- 引入新的JFR事件类型
-
兼容性保障:
- JfrReader无缝处理新事件类型
- 用户视角保持原有事件流语义
- 通过
nobatch参数保留传统模式
实际效果与收益
该优化方案带来了多方面的改进:
-
性能提升:
- 减少90%以上的信号处理开销(对于典型线程池场景)
- 降低内核调度压力
- 使更小的采样间隔(如10ms)变得可行
-
存储优化:
- 显著减小JFR记录文件大小
- 相同存储空间可记录更长时间的性能数据
-
分析精度:
- 节省的开销可用于增加采样频率
- 获取更精细的时间维度性能特征
技术启示
这一优化体现了性能分析工具设计的几个重要原则:
- 观察者效应最小化:分析工具自身应尽量减少对被测系统的影响
- 数据有效性原则:识别并过滤低价值采样数据
- 智能批处理思想:对重复模式进行压缩编码
对于需要分析大规模多线程应用的开发者,建议在async-profiler 2.0+版本中积极尝试这一优化特性,特别是在容器化部署等资源敏感场景下,能够获得更高质量的性能分析数据。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
698
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
280
React Native鸿蒙化仓库
JavaScript
270
328