Async-profiler中wall clock采样模式的优化实践
2025-05-28 11:11:53作者:薛曦旖Francesca
在Java性能分析领域,async-profiler作为一款低开销的采样分析工具,其wall clock采样模式(-e wall)一直是分析线程整体行为的重要功能。然而,当面对现代Java应用中常见的数千线程场景时,传统的实现方式会带来显著的性能开销。本文将深入探讨这一问题的技术背景、优化思路及实现方案。
传统实现的问题本质
传统wall clock采样模式通过专用线程以固定间隔(如100ms)向所有应用线程发送信号进行采样。这种设计在以下场景会产生明显问题:
- 信号风暴问题:假设应用有1000个线程,采样间隔100ms,意味着每秒产生10,000次信号中断
- 无效采样问题:线程池中大部分空闲线程会被反复采样,但它们的堆栈几乎不变
- 副作用问题:信号会唤醒本应休眠的线程,导致不必要的内核调度开销
优化方案的技术实现
核心优化思路是识别并跳过空闲线程的重复采样,具体通过以下机制实现:
-
线程状态智能判断:
- 采样IDLE状态线程时记录其CPU使用量
- 后续采样时比较CPU使用量变化
- 无变化则判定线程仍处于相同状态点
-
采样结果批量记录:
- 引入新的JFR事件类型
profiler.WallClockSample - 包含原始
jdk.ExecutionSample所有字段 - 新增
samples字段记录跳过的采样次数 - 例如:将500次相同采样合并为1次真实采样+499次计数
- 引入新的JFR事件类型
-
兼容性保障:
- JfrReader无缝处理新事件类型
- 用户视角保持原有事件流语义
- 通过
nobatch参数保留传统模式
实际效果与收益
该优化方案带来了多方面的改进:
-
性能提升:
- 减少90%以上的信号处理开销(对于典型线程池场景)
- 降低内核调度压力
- 使更小的采样间隔(如10ms)变得可行
-
存储优化:
- 显著减小JFR记录文件大小
- 相同存储空间可记录更长时间的性能数据
-
分析精度:
- 节省的开销可用于增加采样频率
- 获取更精细的时间维度性能特征
技术启示
这一优化体现了性能分析工具设计的几个重要原则:
- 观察者效应最小化:分析工具自身应尽量减少对被测系统的影响
- 数据有效性原则:识别并过滤低价值采样数据
- 智能批处理思想:对重复模式进行压缩编码
对于需要分析大规模多线程应用的开发者,建议在async-profiler 2.0+版本中积极尝试这一优化特性,特别是在容器化部署等资源敏感场景下,能够获得更高质量的性能分析数据。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
199
219
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100